(1)如圖1,在正方形ABCD中,E是AB上一點,F(xiàn)是AD延長線上一點,且DF=BE.求證:CE=CF;
(2)如圖2,在正方形ABCD中,E是AB上一點,G是AD上一點,如果∠GCE=45°,請你利用(1)的結論證明:GE=BE+GD.
(3)運用(1)(2)解答中所積累的經(jīng)驗和知識,完成下題:
如圖3,在直角梯形ABCD中,ADBC(BC>AD),∠B=90°,AB=BC,E是AB上一點,且∠DCE=45°,BE=4,DE=10,求直角梯形ABCD的面積.
(1)證明:∵四邊形是ABCD正方形,
∴BC=CD,∠B=∠CDF=90°,
∵∠ADC=90°,
∴∠FDC=90°.
∴∠B=∠FDC,
∵BE=DF,
∴△CBE≌△CDF(SAS).
∴CE=CF.

(2)證明:如圖2,延長AD至F,使DF=BE,連接CF.
由(1)知△CBE≌△CDF,
∴∠BCE=∠DCF.
∴∠BCE+∠ECD=∠DCF+∠ECD,
即∠ECF=∠BCD=90°,
又∠GCE=45°,
∴∠GCF=∠GCE=45°.
∵CE=CF,GC=GC,
∴△ECG≌△FCG.
∴GE=GF,
∴GE=GF=DF+GD=BE+GD.

(3)如圖3,過C作CG⊥AD,交AD延長線于G.
在直角梯形ABCD中,
∵ADBC,
∴∠A=∠B=90°,
又∵∠CGA=90°,AB=BC,
∴四邊形ABCG為正方形.
∴AG=BC.…(7分)
∵∠DCE=45°,
根據(jù)(1)(2)可知,ED=BE+DG.…(8分)
∴10=4+DG,
即DG=6.
設AB=x,則AE=x-4,AD=x-6,
在Rt△AED中,
∵DE2=AD2+AE2,即102=(x-6)2+(x-4)2
解這個方程,得:x=12或x=-2(舍去).…(9分)
∴AB=12.
∴S梯形ABCD=
1
2
(AD+BC)•AB=
1
2
×(6+12)×12=108.
即梯形ABCD的面積為108.…(10分)
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,四邊形ABCD的對角線AC,BD相交于點O,且OA=OB=OC=OD=1,AB=
2
.四邊形ABCD是正方形嗎?說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,在正方形ABCD中,對角線AC、BD交于點D,CE平分∠ACD,分別交AD、BD于E、G,EFAC交CD于F,連接OE下列結論:①EF=AE,②∠AOE=∠AEO,③OG=
1
2
AE
,④S△ACE=2S△DCE,⑤AB=(
2
+1)DG
.其中正確的是( 。
A.①③⑤B.①②④C.①③④D.②③⑤

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,正方形DEMF內接于△ABC,AQ⊥BC于Q,交DE于P,若S△ADE=1,S正方形DEFM=4,求S△ABC

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,在邊長為2的正方形ABCD中,E是AB延長線上一點,且BE=BD,F(xiàn)是CE的中點,則△BDF的面積是( 。
A.
2
+1
B.2
2
+1
C.2
2
+2
D.
6

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

下列命題中,不成立的是(  )
A.等腰梯形的兩條對角線相等
B.菱形的對角線平分一組對角
C.順次連接四邊形的各邊中點所得的四邊形是平行四邊形
D.兩條對角線互相垂直且相等的四邊形是正方形

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,在正方形ABCD中,兩條對角線相交于點O,∠BCA的平分線交BD于E,若正方形ABCD的周長是12cm,則DE=______cm.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,正方形ABCD的邊長為2,點E是BC邊的中點,過點B作BG⊥AE,垂足為G,延長BG交AC于點F,則CF=______.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖1,四邊形ABCD是正方形,G是CD邊上的一個動點(點G與C、D不重合),以CG為一邊在正方形ABCD外作正方形CEFG,連接BG,DE.我們探究下列圖中線段BG、線段DE的長度關系及所在直線的位置關系.

(1)猜想圖1中線段BG、線段DE的長度關系及所在直線的位置關系;
(2)將圖1中的正方形CEFG繞著點C按順時針(或逆時針)方向旋轉任意角度a,得到如圖2、如圖3情形.請你通過觀察、測量等方法判斷(1)中得到的結論是否仍然成立,并選取圖2證明你的判斷.

查看答案和解析>>

同步練習冊答案