(1)證明:過點E作EM∥AD,交CD于點M,
∴∠H=∠FEM,
∵EF=FH,∠DFH=∠EFM,
∴△DFH≌△MFE,
∴DH=EM,
∵四邊形ABCD為等腰梯形,
∴∠C=∠ADC.
∵EM∥AD,
∴∠ADC=∠EMC,
∴∠C=∠EMC.
∴EM=EC,
∴DH=EC,
∵BC=BE+EC,AD=BC,
∴AD=BE+DH;
(2)解:過點A作AG⊥CD于點G,
∵在梯形ABCD中,AD=BC,AB=10,CD=18,
∴DG=(18-10)÷2=4,
∵在Rt△ADG中,∠ADC=60°,
∴AG=4
,
∴S
梯形ABCD=
×(10+18)×4
=56
.
分析:(1)過點E作EM∥AD,交CD于點M,由平行線的性質(zhì)得出∠H=∠FEM,根據(jù)全等三角形的判定定理得出△DFH≌△MFE,故可得出DH=EM,再由等腰三角形的性質(zhì)得出∠C=∠ADC,再根據(jù)平行線的性質(zhì)得出∠ADC=∠EMC,故∠C=∠EMC,所以EM=EC,DH=EC,故可得出結(jié)論.
(2)過點A作AG⊥CD于點G,由等腰梯形的性質(zhì)可求出DG的長度,在Rt△ADG中,利用銳角三角函數(shù)的定義得出AG的長,再由S
梯形ABCD=
×(AB+CD)×AG即可得出結(jié)論;
點評:本題考查的是等腰梯形的性質(zhì)及全等三角形的判定與性質(zhì),等腰三角形的判定與性質(zhì),根據(jù)題意作出輔助線,構(gòu)造出直角三角形及等腰三角形是解答此題的關(guān)鍵.