【題目】如圖,四邊形ABCD是平行四邊形,點(diǎn)A(2,0),B(6,2),C(6,6),反比例函數(shù)y1=(x>0)的圖象過(guò)點(diǎn)D,點(diǎn)P是一次函數(shù)y2=kx+3﹣3k(k≠0)的圖象與該反比例函數(shù)的一個(gè)公共點(diǎn),對(duì)于下面四個(gè)結(jié)論:

①反比例函數(shù)的解析式是y1=

②一次函數(shù)y2=kx+3﹣3k(k≠0)的圖象一定經(jīng)過(guò)(6,6)點(diǎn);

③若一次函數(shù)y2=kx+3﹣3k的圖象經(jīng)過(guò)點(diǎn)C,當(dāng)x>2時(shí),y1<y2

④對(duì)于一次函數(shù)y2=kx+3﹣3k(k≠0),當(dāng)yx的增大而增大時(shí),點(diǎn)P橫坐標(biāo)a的取值范圍是0<a<3.

其中正確的是( 。

A. ①③ B. ②③ C. ②④ D. ③④

【答案】D

【解析】分析:根據(jù)平行四邊形的性質(zhì)求D點(diǎn)的坐標(biāo);(2)x=6代入y2kx+3﹣3k中,看函數(shù)值是否為6;③把點(diǎn)C的坐標(biāo)代入y2kx+3﹣3k,求得一次函數(shù)的解析,由一次函數(shù)的解析式和反比例函數(shù)的解析組成的方程組可求得它們的交點(diǎn)坐標(biāo)結(jié)合函數(shù)圖象判斷;一次函數(shù)過(guò)定點(diǎn)(3,3),確定x=3時(shí)的函數(shù)值即可.

詳解:①∵四邊形ABCD是平行四邊形,∴ADBC

B(6,2),C(6,6),∴BCx軸,ADBC=4,而A點(diǎn)坐標(biāo)為(2,0),

∴點(diǎn)D的坐標(biāo)為(2,4),

∵反比例函數(shù)y1(x>0)的函數(shù)圖象經(jīng)過(guò)點(diǎn)D(2,4),

∴4=,∴m=8,

∴反比例函數(shù)的解析式為y,①不正確;

②當(dāng)x=6時(shí),ykx+3﹣3k=6k+3﹣3k=3k+3≠6,

∴一次函數(shù)ykx+3﹣3k(k≠0)的圖象不一定過(guò)點(diǎn)C,②不正確;

③∵一次函數(shù)y2kx+3﹣3k的圖象經(jīng)過(guò)點(diǎn)C,

∴6=6k+3﹣3k,解得:k=1.

y2x

聯(lián)立,解得:(舍去).

結(jié)合函數(shù)圖象即可得出:

當(dāng)x時(shí),y1y2,③成立;

④∵一次函數(shù)y2kx+3﹣3k(k≠0),yx的增大而增大,

k>0,∴交點(diǎn)P在第一象限

x=3代入到反比例函數(shù)y中,得:y

因?yàn)?/span>y2-3=k(x﹣3),當(dāng)x=3時(shí),y2=3,

一次函數(shù)y2kx+3﹣3k(k≠0)恒過(guò)點(diǎn)(3,3),點(diǎn)(3,)(3,3)的下方,

即點(diǎn)P應(yīng)該在點(diǎn)(3,)的左方,∴點(diǎn)P橫坐標(biāo)a的取值范圍是a<3.

即④正確.

綜上可知:③④正確,

故選D

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在RtABC中,∠C90°,以頂點(diǎn)A為圓心,適當(dāng)長(zhǎng)為半徑畫(huà)弧,分別交AC、AB于點(diǎn)MN,再分別以點(diǎn)M、N為圓心,大于MN的長(zhǎng)為半徑畫(huà)弧,兩弧交于點(diǎn)P,作射線AP交邊BC于點(diǎn)D.若AC9AB15,且SABC54,則ABD的面積是( 。

A. B. C. 45D. 35

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】龜兔首次賽跑之后,輸了比賽的兔子沒(méi)有氣餒,總結(jié)反思后,和烏龜約定再賽一場(chǎng).圖中的函數(shù)圖象刻畫(huà)了龜兔再次賽跑的故事(x表示烏龜從起點(diǎn)出發(fā)所行的時(shí)間,y1表示烏龜所行的路程,y2表示兔子所行的路程).有下列說(shuō)法:

龜兔再次賽跑的路程為1000;

兔子和烏龜同時(shí)從起點(diǎn)出發(fā);

烏龜在途中休息了10分鐘;

兔子在途中750處追上烏龜.

其中正確的說(shuō)法是   .(把你認(rèn)為正確說(shuō)法的序號(hào)都填上)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四邊形OABC中,BCAO,AOC=90°,點(diǎn)A,B的坐標(biāo)分別為(5,0),(2,6),點(diǎn)DAB上一點(diǎn),且,雙曲線y=(k>0)經(jīng)過(guò)點(diǎn)D,交BC于點(diǎn)E

(1)求雙曲線的解析式;

(2)求四邊形ODBE的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】學(xué)校準(zhǔn)備從甲乙兩位選手中選擇一位選手代表學(xué)校參加所在地區(qū)的漢字聽(tīng)寫(xiě)大賽,學(xué)校對(duì)兩位選手從表達(dá)能力、閱讀理解、綜合素質(zhì)和漢字聽(tīng)寫(xiě)四個(gè)方面做了測(cè)試,他們各自的成績(jī)(百分制)如下表:

選手

表達(dá)能力

閱讀理解

綜合素質(zhì)

漢字聽(tīng)寫(xiě)

85

78

85

73

73

80

82

83

1)由表中成績(jī)已算得甲的平均成績(jī)?yōu)?/span>80.25,請(qǐng)計(jì)算乙的平均成績(jī),從他們的這一成績(jī)看,應(yīng)選派誰(shuí);

2)如果表達(dá)能力、閱讀理解、綜合素質(zhì)和漢字聽(tīng)寫(xiě)分別賦予它們20%、10%、30%和40%的權(quán)重,請(qǐng)分別計(jì)算兩名選手的最終成績(jī),從他們的這一成績(jī)看,應(yīng)選派誰(shuí).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某地圖書(shū)館為了滿足群眾多樣化閱讀的需求,決定購(gòu)買甲、乙兩種品牌的電腦若干組建電子閱覽室.經(jīng)了解,甲、乙兩種品牌的電腦單價(jià)分別3100元和4600元.

(1)若購(gòu)買甲、乙兩種品牌的電腦共50臺(tái),恰好支出200000元,求甲、乙兩種品牌的電腦各購(gòu)買了多少臺(tái)?

(2)若購(gòu)買甲、乙兩種品牌的電腦共50臺(tái),每種品牌至少購(gòu)買一臺(tái),且支出不超過(guò)160000元,共有幾種購(gòu)買方案?并說(shuō)明哪種方案最省錢(qián).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,給出五個(gè)等量關(guān)系:①ADBC;②ACBD;③CEDE;④∠D=∠C;⑤∠DAB=∠CBA

請(qǐng)你以其中兩個(gè)為條件,另外三個(gè)中的一個(gè)為結(jié)論,推出一個(gè)正確的結(jié)論(只需寫(xiě)出一種情況),并加以證明.

已知:

求證:

證明:

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,將矩形紙片ABCD沿其對(duì)角線AC折疊,使點(diǎn)B落在點(diǎn)B′的位置,AB′CD交于點(diǎn)E

1)求證:△AED≌△CEB′;

2)求證:點(diǎn)E在線段AC的垂直平分線上;

3)若AB=8AD=3,求圖中陰影部分的周長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了提高服務(wù)質(zhì)量,某賓館決定對(duì)甲、乙兩種套房進(jìn)行星級(jí)提升,已知甲種套房提升費(fèi)用比乙種套房提升費(fèi)用少3萬(wàn)元,如果提升相同數(shù)量的套房,甲種套房費(fèi)用為625萬(wàn)元,乙種套房費(fèi)用為700萬(wàn)元.

1)甲、乙兩種套房每套提升費(fèi)用各多少萬(wàn)元?

2)如果需要甲、乙兩種套房共80套,市政府籌資金不少于2090萬(wàn)元,但不超過(guò)2096萬(wàn)元,且所籌資金全部用于甲、乙種套房星級(jí)提升,市政府對(duì)兩種套房的提升有幾種方案?哪一種方案的提升費(fèi)用最少?

3)在(2)的條件下,根據(jù)市場(chǎng)調(diào)查,每套乙種套房的提升費(fèi)用不會(huì)改變,每套甲種套房提升費(fèi)用將會(huì)提高a萬(wàn)元(a0),市政府如何確定方案才能使費(fèi)用最少?

查看答案和解析>>

同步練習(xí)冊(cè)答案