【題目】如圖1,在正方形ABCD中,對(duì)角線AC,BD交于點(diǎn)O,點(diǎn)EAB上,點(diǎn)FBC的延長(zhǎng)線上,且AECF,連接EFAC于點(diǎn)P,分別連接DE,DF,DP

(1)求證:△ADE≌△CDF;

(2)求證:△ADP∽△BDF;

(3)如圖2,若PEBE,則的值是   (直按寫出結(jié)果即可)

【答案】(1)證明見解析;(2)證明見解析;(3)

【解析】

1)根據(jù)SAS證明即可.

2)想辦法證明∠DAP=∠DBF,∠ADP=∠BDF即可解決問題.

3)如圖2中,作PHBCH.首先證明∠EFB30°,設(shè)HPHCm,則PC m,HFm,求出CF即可解決問題.

(1)∵四邊形ABCD是正方形,

DADC,∠DAE=∠BCD=∠DCF90°,

AECF,

∴△ADE≌△CDF(SAS)

(2)FHABAC的延長(zhǎng)線于H

∵四邊形ABCD是正方形,

∴∠ACB=∠FCH45°,

ABFH,

∴∠HFC=∠ABC90°,

∴∠FCH=∠H45°,

CFFHAE,

∵∠PAE=∠H,∠APE=∠FPH,

∴△APE≌△HPF(AAS)

PEPF,

∵△ADE≌△CDF

DEDF,∠ADE=∠CDF,∠ADE=∠CDF,

∴∠EFD=∠ADC90°,

∴△DEF是等腰直角三角形,

EPPF,

∴∠EDP=∠FDP45°,

ADP=∠ADE+PDE=∠ADE+45°,∠BDP=∠CDF+BDC=∠CDF+45°,

∴∠ADP=∠BDF,

∵∠DAP=∠DBF45°,

∴△ADP∽△BDF

(3)如圖2中,作PHBCH

(2)可知:PEPF

BEPE,

EF2BE

∵∠EBF90°,

sinEFB,

∴∠EFB30°,

PHFH,∠PCH45°,

∴∠PHC90°,∠HPC=∠HCP45°,

HPHC,設(shè)HPHCm,則

CFmm,

故答案為:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】程大位是我國(guó)明朝商人,珠算發(fā)明家.他60歲時(shí)完成的《直指算法統(tǒng)宗》是東方古代數(shù)學(xué)名著,詳述了傳統(tǒng)的珠算規(guī)則,確立了算盤用法.書中有如下問題:

一百饅頭一百僧,大僧三個(gè)更無(wú)爭(zhēng),

小僧三人分一個(gè),大小和尚得幾。

意思是:有100個(gè)和尚分100個(gè)饅頭,如果大和尚1人分3個(gè),小和尚3人分1個(gè),正好分完,大、小和尚各有多少人,下列求解結(jié)果正確的是(  )

A. 大和尚25人,小和尚75 B. 大和尚75人,小和尚25

C. 大和尚50人,小和尚50 D. 大、小和尚各100

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】深圳某學(xué)校為構(gòu)建書香校園,擬購(gòu)進(jìn)甲、乙兩種規(guī)格的書柜放置新購(gòu)置的圖書.已知每個(gè)甲種書柜的進(jìn)價(jià)比每個(gè)乙種書柜的進(jìn)價(jià)高20%,用3600元購(gòu)進(jìn)的甲種書柜的數(shù)量比用4200元購(gòu)進(jìn)的乙種書柜的數(shù)量少4臺(tái).

1)求甲、乙兩種書柜的進(jìn)價(jià);

2)若該校擬購(gòu)進(jìn)這兩種規(guī)格的書柜共60個(gè),其中乙種書柜的數(shù)量不大于甲種書柜數(shù)量的2倍.請(qǐng)您幫該校設(shè)計(jì)一種購(gòu)買方案,使得花費(fèi)最少.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,E、F是正方形ABCD對(duì)角線AC上的兩點(diǎn),且,連接BE、DEBF、DF

求證:四邊形BEDF是菱形:

的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABC內(nèi)接于⊙O,AB=AC,CO的延長(zhǎng)線交AB于點(diǎn)D.

(1)求證:AO平分∠BAC;

(2)BC=6,sinBAC=,求ACCD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知直線與拋物線相交于A,B兩點(diǎn),且點(diǎn)A1,-4)為拋物線的頂點(diǎn),點(diǎn)Bx軸上。

1)求拋物線的解析式;

2)在(1)中拋物線的第二象限圖象上是否存在一點(diǎn)P,使△POB△POC全等?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由;

3)若點(diǎn)Qy軸上一點(diǎn),且△ABQ為直角三角形,求點(diǎn)Q的坐標(biāo)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,EF、GH分別為矩形ABCD的邊AB、BC、CD、DA的中點(diǎn),連接ACHE、EC,GA,GF.已知AGGFAC=,則AB的長(zhǎng)為__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△PAB與△PCD均為等腰直角三角形,點(diǎn)CPB上,若△ABC與△BCD的面積之和為10,則△PAB與△PCD的面積之差為( 。

A. 5B. 10C. l5D. 20

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,如圖,數(shù)軸上有A、B兩點(diǎn).

1)線段AB的中點(diǎn)表示的數(shù)是   

2)線段AB的長(zhǎng)度是   ;

3)若AB兩點(diǎn)問時(shí)向右運(yùn)動(dòng),A點(diǎn)速度是每秒3個(gè)單位長(zhǎng)度,B點(diǎn)速度是每秒2個(gè)單位長(zhǎng)度,問經(jīng)過幾秒時(shí)AB2?

查看答案和解析>>

同步練習(xí)冊(cè)答案