【題目】綜合:
(1)如圖①,在正方形ABCD中,△AEF的頂點(diǎn)E,F(xiàn)分別在BC,CD邊上,高AG與正方形的邊長(zhǎng)相等,求∠EAF的度數(shù);

(2)如圖②,在Rt△ABD中,∠BAD=90°,AB=AD,點(diǎn)M,N是BD邊上的任意兩點(diǎn),且∠MAN=45°,將△ABM繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°至△ADH位置,連接NH,試判斷MN,ND,BM之間的數(shù)量關(guān)系,并說(shuō)明理由.

(3)在圖①中,連接BD分別交AE,AF于點(diǎn)M,N,若DN=3 ,BM=3 ,求MN的長(zhǎng).

【答案】
(1)解:如圖①,

在Rt△ABE和Rt△AGE中, ,

∴△ABE≌△AGE(HL),

∴∠BAE=∠GAE,

同理∠GAF=∠DAF,

∴∠EAF= =45°;


(2)解:如圖②,

∵∠BAD=90°,AB=AD,

∴∠ABD=∠ADB=45°,

由題意知△ABM≌ADH,

∴∠ADH=∠ABM=45°,AH=AM,

∴∠BDH=90°,

∵∠MAN=45°,

∴∠BAM+∠DAN=45°,

∴∠DAN+∠DAH=45°,

即∠NAH=45°,

在△AMN和△AHN中,

,

∴△AMN≌△AHN(SAS),

∴HN=MN,

在Rt△NDH中,NH2=DH2+ND2,

∴MN2=BM2+DN2


(3)解:如圖③,由(2)中結(jié)論可知:MN2=BM2+DN2,

∵DN=3 ,BM=3 ,

∴MN= =9.


【解析】(1)由HL證明△ABE≌△AGE、△AGF≌△ADF即可,只需證明一對(duì)全等,另一對(duì)同理可證;(2)先證明△AMN≌△AHN,進(jìn)而證明△NHD是直角三角形即可;(3)利用(2)中結(jié)論建立方程,解之即可.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】定義:點(diǎn)PABC內(nèi)部或邊上的點(diǎn)(頂點(diǎn)除外),在PAB,PBC,PCA中,若至少有一個(gè)三角形與ABC相似,則稱點(diǎn)PABC的自相似點(diǎn).

例如:圖1,點(diǎn)PABC的內(nèi)部,PBC=A,PCB=ABC,BCP∽△ABC,故點(diǎn)PABC的自相似點(diǎn).

請(qǐng)你運(yùn)用所學(xué)知識(shí),結(jié)合上述材料,解決下列問(wèn)題:

在平面直角坐標(biāo)系中,點(diǎn)M曲線C上的任意一點(diǎn),點(diǎn)Nx軸正半軸上的任意一點(diǎn).

(1) 如圖2,點(diǎn)P是OM上一點(diǎn),ONP=M, 試說(shuō)明點(diǎn)P是MON的自相似點(diǎn); 當(dāng)點(diǎn)M的坐標(biāo)是,點(diǎn)N的坐標(biāo)是時(shí),求點(diǎn)P 的坐標(biāo);

(2) 如圖3,當(dāng)點(diǎn)M的坐標(biāo)是點(diǎn)N的坐標(biāo)是時(shí),求MON的自相似點(diǎn)的坐標(biāo);

(3) 是否存在點(diǎn)M和點(diǎn)N,使MON無(wú)自相似點(diǎn),?若存在,請(qǐng)直接寫(xiě)出這兩點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】若一個(gè)多邊形的每個(gè)內(nèi)角都為135°,則它的邊數(shù)為(
A.6
B.8
C.5
D.10

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在數(shù)軸上表示﹣2的點(diǎn)與表示3的點(diǎn)之間的距離是(
A.5
B.﹣5
C.1
D.﹣1

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知正方形ABCD,P為射線AB上的一點(diǎn),以BP為邊作正方形BPEF,使點(diǎn)F在線段CB的延長(zhǎng)線上,連接EA,EC.

(1)如圖1,若點(diǎn)P在線段AB的延長(zhǎng)線上,求證:EA=EC;

(2)如圖2,若點(diǎn)P在線段AB的中點(diǎn),連接AC,判斷ACE的形狀,并說(shuō)明理由;

(3)如圖3,若點(diǎn)P在線段AB上,連接AC,當(dāng)EP平分AEC時(shí),設(shè)AB=a,BP=b,求a:b及AEC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】分解因式2x24x2____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為發(fā)展學(xué)生的核心素養(yǎng),培養(yǎng)學(xué)生的綜合能力,某學(xué)校計(jì)劃開(kāi)設(shè)四門(mén)選修課:樂(lè)器、舞蹈、繪畫(huà)、書(shū)法,學(xué)校采取隨機(jī)抽樣的方法進(jìn)行問(wèn)卷調(diào)查(每個(gè)被調(diào)查的學(xué)生必須選擇而且只能選擇其中一門(mén)).對(duì)調(diào)查結(jié)果進(jìn)行整理,繪制成如下兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)結(jié)合圖中所給信息解答下列問(wèn)題:

(1)本次調(diào)查的學(xué)生共有 人,在扇形統(tǒng)計(jì)圖中,m的值是 ;

(2)將條形統(tǒng)計(jì)圖補(bǔ)充完整;

(3)在被調(diào)查的學(xué)生中,選修書(shū)法的有2名女同學(xué),其余為男同學(xué),現(xiàn)要從中隨機(jī)抽取2名同學(xué)代表學(xué)校參加某社區(qū)組織的書(shū)法活動(dòng),請(qǐng)寫(xiě)出所抽取的2名同學(xué)恰好是1名男同學(xué)和1名女同學(xué)的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平行四邊形ABCD中,點(diǎn)E、F分別是AD、BC的中點(diǎn).求證:AF=CE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一直線與兩坐標(biāo)軸的正半軸分別交于A、B兩點(diǎn),P是線段AB上任意一點(diǎn)(不包括端點(diǎn)),過(guò)P分別作兩坐標(biāo)軸的垂線與兩坐標(biāo)軸圍成的矩形的周長(zhǎng)為20,則該直線的函數(shù)表達(dá)式是(
A.y=x+10
B.y=﹣x+10
C.y=x+20
D.y=﹣x+20

查看答案和解析>>

同步練習(xí)冊(cè)答案