【題目】已知:如圖所示.在△ABC中,∠B=90°,AB=5cm,BC=7cm.點(diǎn)P從點(diǎn)A開始沿AB邊向點(diǎn)B以1cm/s的速度移動(dòng),點(diǎn)Q從點(diǎn)B開始沿BC邊向點(diǎn)C以2cm/s的速度移動(dòng),當(dāng)其中一點(diǎn)達(dá)到終點(diǎn)后,另外一點(diǎn)也隨之停止運(yùn)動(dòng).
(1)如果P,Q分別從A,B同時(shí)出發(fā),那么幾秒后,△PBQ的面積等于4cm2?
(2)如果P,Q分別從A,B同時(shí)出發(fā),那么幾秒后,PQ的長度等于5cm?
(3)在(1)中,△PQB的面積能否等于7cm2?說明理由.
【答案】(1)1;(2)2;(3)不能.
【解析】
(1)設(shè)P、Q分別從A、B兩點(diǎn)出發(fā),x秒后,AP=xcm,PB=(5-x)cm,BQ=2xcm則△PBQ的面積等于×2x(5-x),令該式等于4,列出方程求出符合題意的解;
(2)利用勾股定理列出方程求解即可;
(3)看△PBQ的面積能否等于7cm2,只需令×2x(5-x)=7,化簡該方程后,判斷該方程的△與0的關(guān)系,大于或等于0則可以,否則不可以.
設(shè)t秒后,則:AP=tcm,BP=(5﹣t)cm;BQ=2tcm.
(1)S△PBQ=BP×BQ,即,解得:t=1或4.(t=4秒不合題意,舍去)
故:1秒后,△PBQ的面積等于4cm2.
(2)PQ=5,則PQ2=25=BP2+BQ2,即25=(5﹣t)2+(2t)2,t=0(舍)或2.
故2秒后,PQ的長度為5cm.
(3)令S△PQB=7,即:BP×=7,,整理得:t2﹣5t+7=0.
由于b2﹣4ac=25﹣28=﹣3<0,則方程沒有實(shí)數(shù)根.
所以,在(1)中,△PQB的面積不等于7cm2.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AC是⊙O的直徑,弦BD⊥AO于E,連接BC,過點(diǎn)O作OF⊥BC于F,若BD=16cm,AE=4cm.
(1)求⊙O的半徑;
(2)求OF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)C是半圓O上的一點(diǎn),AB是⊙O的直徑,D是的中點(diǎn),作DE⊥AB于點(diǎn)E,連接AC交DE于點(diǎn)F,求證:AF=DF.
下面是小明的做法,請(qǐng)幫他補(bǔ)充完整(包括補(bǔ)全圖形)
解:補(bǔ)全半圓O為完整的⊙O,連接AD,延長DE交⊙O于點(diǎn)H(補(bǔ)全圖形)
∵D是的中點(diǎn),
∴.
∵DE⊥AB,AB是⊙O的直徑,
∴( )(填推理依據(jù))
∴
∴∠ADF=∠FAD( )(填推理依據(jù))
∴AF=DF( )(填推理依據(jù))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)的圖象如圖所示,對(duì)稱軸是直線.下列結(jié)論:①;②;③;④(為實(shí)數(shù)).其中結(jié)論正確的個(gè)數(shù)為( )
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】超市銷售某種兒童玩具,如果每件利潤為40元(市場管理部門規(guī)定,該種玩具每件利潤不能超過60元),每天可售出50件.根據(jù)市場調(diào)查發(fā)現(xiàn),銷售單價(jià)每增加2元,每天銷售量會(huì)減少1件.當(dāng)銷售單價(jià)為多少時(shí),超市每天銷售這種玩具可獲利潤2250元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠C=∠CBD=90°,DE⊥AB于點(diǎn)E.
(1)求證:△DBE∽△BAC.
(2)若BC=3,DB=2,CA=1,求DE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,,,,點(diǎn)從點(diǎn)開始沿邊向點(diǎn)以的速度移動(dòng),點(diǎn)從點(diǎn)開始沿邊向點(diǎn)以的速度移動(dòng).
(1)如果分別從同時(shí)出發(fā),那么幾秒后,的面積等于?
(2)如果分別從同時(shí)出發(fā),的面積能否等于?
(3)如果分別從同時(shí)出發(fā),那么幾秒后,的長度等于?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在Rt△ABC中,BC=AC=2,點(diǎn)M是AC邊上一動(dòng)點(diǎn),連接BM,以CM為直徑的⊙O交BM于N,則線段AN的最小值為___.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知拋物線與x軸交于A(-1,0),B(3,0)兩點(diǎn),與y軸交于點(diǎn)C.
(1)求該拋物線的解析式;
(2)如圖①,若點(diǎn)D是拋物線上一動(dòng)點(diǎn),設(shè)點(diǎn)D的橫坐標(biāo)為m(0<m<3),連接CD,BD,BC,AC,當(dāng)△BCD的面積等于△AOC面積的2倍時(shí),求m的值;
(3)若點(diǎn)N為拋物線對(duì)稱軸上一點(diǎn),請(qǐng)?jiān)趫D②中探究拋物線上是否存在點(diǎn)M,使得以B,C,M,N為頂點(diǎn)的四邊形是平行四邊形?若存在,請(qǐng)直接寫出所有滿足條件的點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com