分析 過(guò)A作AF⊥BE于F,由四邊形ABCD是平行四邊形,得到AD∥BC,∠C=∠DAB,根據(jù)平行線的性質(zhì)得到∠AEB=∠ABE,根據(jù)角平分線的定義得到∠ABE=∠CBE,等量代換得到∠AEB=∠ABE,求得AE=AB,根據(jù)等腰三角形的性質(zhì)得到∠EAF=∠BAF,解直角三角形即可得到結(jié)論.
解答 解:過(guò)A作AF⊥BE于F,
∵四邊形ABCD是平行四邊形,
∴AD∥BC,∠C=∠DAB,
∴∠AEB=∠ABE,
∵∠ABC的平分線交AD于E,
∴∠ABE=∠CBE,
∴∠AEB=∠ABE,
∴AE=AB,
∴∠EAF=∠BAF,
∵cos∠AEB=$\frac{2}{3}$,
∴∠AEB≈48°23′,
∴∠EAF=41°37′,
∴∠C=83°14′.
點(diǎn)評(píng) 本題考查了平行四邊形的性質(zhì),解直角三角形,等腰三角形的性質(zhì),平行線的性質(zhì),正確的作出輔助線構(gòu)造直角三角形是解題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 3x-4 | B. | -3x+4 | C. | 6xy+4y | D. | -3x-8y |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com