解:(1)原式=(-3+2)a
2+(2-4)ab
=-a
2-2ab;
(2)原式=15a
2b-5ab
2-3ab
2-15a
2b
=(-5-3)ab
2=-8ab
2;
(3)原式=
-
=
-
=
=
;
(4)原式=-
(a-b)
2-4(a-b),
當(dāng)a-b=4時(shí),原式=(-
)×4
2-4×4
=-20;
(5)∵
,
∴a+2=0,b-
=0,
解得a=-2,b=
,
原式=5a
2b-[2a
2b-ab
2+2a
2b-4-2ab
2]
=5a
2b-2a
2b+ab
2-2a
2b+4+2ab
2=(5-2-2)a
2b+(1+2)ab
2+4
=a
2b+3ab
2+4,
當(dāng)a=-2,b=
時(shí),
原式=(-2)
2×
+3×(-2)×(
)
2+4
=1-
+4
=
.
分析:(1)把各同類項(xiàng)進(jìn)行合并即可;
(2)先去括號(hào),再合并同類項(xiàng)即可;
(3)先通分,再合并同類項(xiàng)即可;
(4)先把所求代數(shù)式進(jìn)行化簡,再把a(bǔ)-b=4代入進(jìn)行計(jì)算;
(5)先根據(jù)非負(fù)數(shù)的性質(zhì)求出a、b的值,再把原式進(jìn)行化簡,把a(bǔ)、b的值代入進(jìn)行計(jì)算即可.
點(diǎn)評(píng):本題考查的是整式的化簡求值、整式的加減及非負(fù)數(shù)的性質(zhì),熟知整式的加減法則是解答此題的關(guān)鍵.