閱讀下面的材料,并解答問題:
問題1:已知正數(shù),有下列命題;;;
根據(jù)以上三個命題所提供的規(guī)律猜想:______,
以上規(guī)律可表示為a+b______
問題2:建造一個容積為8立方米,深2米的長方形無蓋水池,池底和池壁的造價分別為每平方米120元和80元.
(1)設池長為x米,水池總造價為y(元),求y和x的函數(shù)關系式;
(2)應用“問題1”題中的規(guī)律,求水池的最低造價.
【答案】分析:問題1:根據(jù)以上三個命題所提供的規(guī)律猜想可得出結(jié)論.
問題2:(1)設池長為x米,水池總造價為y(元),由容積=底面積×高,得池寬為,y=480+320x+
(2)周長最短,正方形周長最短,a+b=2,這樣得出池壁面積為16米,進而算出總造價.
解答:解:問題1:根據(jù)以上三個命題所提供的規(guī)律猜想可得:;≥.
問題2:(1)設池長為x米,水池總造價為y(元),由容積=底面積×高,得池寬為,y=480+320x+
(2)底面積:8÷2=4平米,
周長最短為:8米(正方形周長最短),a+b=2,
池壁面積:8×2=16平米,
總造價為:120×4+16×80=1760元.
點評:通過觀察,分析、歸納并發(fā)現(xiàn)其中的規(guī)律,并應用發(fā)現(xiàn)的規(guī)律解決問題是應該具備的基本能力.本題的關鍵規(guī)律為a+b=n.則
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:閱讀理解

閱讀下面的材料,并回答所提出的問題:如圖所示,在銳角三角形ABC中,求證:
b
sinB
=
c
sinC

這個三角形不是一個直角三角形,不能直接使用銳角三角函數(shù)的知識去處理,所以必須構(gòu)造直角三角形,精英家教網(wǎng)過點A作AD⊥BC,垂足為D,則在Rt△ABD和Rt△ACD中由正弦定義可完成證明.
解:如圖,過點A作AD⊥BC,垂足為D,
在Rt△ABD中,sinB=
AD
AB
,則AD=csinB
Rt△ACD中,sinC=
AD
AC
,則AD=bsinC
所以c sinB=b sinC,即
b
sinB
=
c
sinC

(1)在上述分析證明過程中,主要用到了下列三種數(shù)學思想方法的哪一種( 。
A、數(shù)形結(jié)合的思想;B、轉(zhuǎn)化的思想;C、分類的思想
(2)用上述思想方法解答下面問題.
在△ABC中,∠C=60°,AC=6,BC=8,求AB和△ABC的面積.
(3)用上述結(jié)論解答下面的問題(不必添加輔助線)
在銳角三角形ABC中,AC=10,AB=5
6
,∠C=60°,求∠B的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

閱讀下面的材料,并回答所提出的問題:如圖所示,在銳角三角形ABC中,求證:數(shù)學公式
這個三角形不是一個直角三角形,不能直接使用銳角三角函數(shù)的知識去處理,所以必須構(gòu)造直角三角形,過點A作AD⊥BC,垂足為D,則在Rt△ABD和Rt△ACD中由正弦定義可完成證明.
解:如圖,過點A作AD⊥BC,垂足為D,
在Rt△ABD中,sinB=數(shù)學公式,則AD=csinB
Rt△ACD中,sinC=數(shù)學公式,則AD=bsinC
所以c sinB=b sinC,即數(shù)學公式
(1)在上述分析證明過程中,主要用到了下列三種數(shù)學思想方法的哪一種
A、數(shù)形結(jié)合的思想;B、轉(zhuǎn)化的思想;C、分類的思想
(2)用上述思想方法解答下面問題.
在△ABC中,∠C=60°,AC=6,BC=8,求AB和△ABC的面積.
(3)用上述結(jié)論解答下面的問題(不必添加輔助線)
在銳角三角形ABC中,AC=10,AB=數(shù)學公式,∠C=60°,求∠B的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源:2009年江蘇省連云港市中考數(shù)學原創(chuàng)試卷大賽(32)(解析版) 題型:解答題

閱讀下面的材料,并回答所提出的問題:如圖所示,在銳角三角形ABC中,求證:
這個三角形不是一個直角三角形,不能直接使用銳角三角函數(shù)的知識去處理,所以必須構(gòu)造直角三角形,過點A作AD⊥BC,垂足為D,則在Rt△ABD和Rt△ACD中由正弦定義可完成證明.
解:如圖,過點A作AD⊥BC,垂足為D,
在Rt△ABD中,sinB=,則AD=csinB
Rt△ACD中,sinC=,則AD=bsinC
所以c sinB=b sinC,即
(1)在上述分析證明過程中,主要用到了下列三種數(shù)學思想方法的哪一種( )
A、數(shù)形結(jié)合的思想;B、轉(zhuǎn)化的思想;C、分類的思想
(2)用上述思想方法解答下面問題.
在△ABC中,∠C=60°,AC=6,BC=8,求AB和△ABC的面積.
(3)用上述結(jié)論解答下面的問題(不必添加輔助線)
在銳角三角形ABC中,AC=10,AB=,∠C=60°,求∠B的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源:2009年江蘇省連云港市中考數(shù)學原創(chuàng)試卷大賽(22)(解析版) 題型:解答題

閱讀下面的材料,并回答所提出的問題:如圖所示,在銳角三角形ABC中,求證:
這個三角形不是一個直角三角形,不能直接使用銳角三角函數(shù)的知識去處理,所以必須構(gòu)造直角三角形,過點A作AD⊥BC,垂足為D,則在Rt△ABD和Rt△ACD中由正弦定義可完成證明.
解:如圖,過點A作AD⊥BC,垂足為D,
在Rt△ABD中,sinB=,則AD=csinB
Rt△ACD中,sinC=,則AD=bsinC
所以c sinB=b sinC,即
(1)在上述分析證明過程中,主要用到了下列三種數(shù)學思想方法的哪一種( )
A、數(shù)形結(jié)合的思想;B、轉(zhuǎn)化的思想;C、分類的思想
(2)用上述思想方法解答下面問題.
在△ABC中,∠C=60°,AC=6,BC=8,求AB和△ABC的面積.
(3)用上述結(jié)論解答下面的問題(不必添加輔助線)
在銳角三角形ABC中,AC=10,AB=,∠C=60°,求∠B的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源:2009年江蘇省連云港市中考數(shù)學原創(chuàng)試卷大賽(1)(解析版) 題型:解答題

閱讀下面的材料,并回答所提出的問題:如圖所示,在銳角三角形ABC中,求證:
這個三角形不是一個直角三角形,不能直接使用銳角三角函數(shù)的知識去處理,所以必須構(gòu)造直角三角形,過點A作AD⊥BC,垂足為D,則在Rt△ABD和Rt△ACD中由正弦定義可完成證明.
解:如圖,過點A作AD⊥BC,垂足為D,
在Rt△ABD中,sinB=,則AD=csinB
Rt△ACD中,sinC=,則AD=bsinC
所以c sinB=b sinC,即
(1)在上述分析證明過程中,主要用到了下列三種數(shù)學思想方法的哪一種( )
A、數(shù)形結(jié)合的思想;B、轉(zhuǎn)化的思想;C、分類的思想
(2)用上述思想方法解答下面問題.
在△ABC中,∠C=60°,AC=6,BC=8,求AB和△ABC的面積.
(3)用上述結(jié)論解答下面的問題(不必添加輔助線)
在銳角三角形ABC中,AC=10,AB=,∠C=60°,求∠B的度數(shù).

查看答案和解析>>

同步練習冊答案