平面直角坐標(biāo)系中,M(36,0),⊿OMN是等腰直角三角形,∠ONM=90°

(1) 直接寫(xiě)出N的坐標(biāo);

(2) 正方形ABCD是⊿OMN的內(nèi)接正方形,求正方形邊長(zhǎng);

(3) 在(2)的情況下,點(diǎn)P為線段AB上一點(diǎn),以P為圓心,PB為半徑的圓交線段AD于點(diǎn)E.當(dāng)B,E,N在一條直線上時(shí),求⊙P半徑;

(4) 在(3)的情況下,線段CD上取點(diǎn)F,使∠EBF=45°,連結(jié)EF,判斷直線EF與⊙P是否相切.若是,寫(xiě)出推理過(guò)程;若不是,說(shuō)明理由.

 

【答案】

(1) N(18,18) (2) 12(3) (4) 相切

【解析】(1)N(18,18) ---------2分

(2) ∵⊿AOB,⊿CDM是等腰直角三角形

∴OB=AB=BC=CD=CM==12---------3分

∴正方形邊長(zhǎng)為12

 (3)作NG⊥AD于G點(diǎn)       ∵⊿ABE∽⊿GNE---------1分

= =2         ∴AE=4,EG=2---------1分

設(shè)⊙P半徑為r,則PE=r,AP=AB-PB=12-r

∵Rt⊿APE中,AP2+AE2=PE2     ∴(12-r)2+42=r2,r= ---------2分

(4)延長(zhǎng)DC到H,使CH=AE                則⊿ABE≌⊿CBH

∴∠ABE=∠CBH,BE=BH,

∵∠EBF=45°        ∴∠HBF=∠HBC+∠CBF=45°

∴⊿BEF≌⊿BHF---------1分       ∴EF=FH, ---------1分

,,

         ∴PE⊥EF---------1分

直線EF與⊙P相切

 (1)根據(jù)等腰直角三角形的性質(zhì)求解

(2)求得⊿AOB,⊿CDM是等腰直角三角形,則可求得正方形的邊長(zhǎng)

(3)作NG⊥AD于G點(diǎn),可得⊿ABE∽⊿GNE,求得AE=4,EG=2,根據(jù)勾股定理求得⊙P半徑

(4)延長(zhǎng)DC到H,使CH=AE,求得⊿ABE≌⊿CBH,⊿BEF≌⊿BHF,利用三角形的角之間的關(guān)系,求得,從而得出結(jié)論

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,平面直角坐標(biāo)系中有一直角梯形OMNH,點(diǎn)H的坐標(biāo)為(-8,0),點(diǎn)N的坐標(biāo)為(-6,-4).
(1)畫(huà)出直角梯形OMNH繞點(diǎn)O旋轉(zhuǎn)180°的圖形OABC,并寫(xiě)出頂點(diǎn)A,B,C的坐標(biāo)(點(diǎn)M的對(duì)應(yīng)點(diǎn)為A,點(diǎn)N的對(duì)應(yīng)點(diǎn)為B,點(diǎn)H的對(duì)應(yīng)點(diǎn)為C);
(2)求出過(guò)A,B,C三點(diǎn)的拋物線的表達(dá)式;
(3)試設(shè)計(jì)一種平移使(2)中的拋物線經(jīng)過(guò)四邊形ABCO的對(duì)角線交點(diǎn);
(4)截取CE=OF=AG=m,且E,F(xiàn),G分別在線段CO,OA,AB上,四邊精英家教網(wǎng)形BEFG是否存在鄰邊相等的情況?若存在,請(qǐng)直接寫(xiě)出此時(shí)m的值,并指出相等的鄰邊;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在平面直角坐標(biāo)系中,以O(shè)(0,0),A(1,1),B(3,0)為頂點(diǎn),構(gòu)造平行四邊形,則第四個(gè)頂點(diǎn)的坐標(biāo)可以是
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

8、在平面直角坐標(biāo)系中,對(duì)于平面內(nèi)任一點(diǎn)(a,b),若規(guī)定以下三種變換:
1、f(a,b)=(-a,b).如:f(1,3)=(-1,3);
2、g(a,b)=(b,a).如:g(1,3)=(3,1);
3、h(a,b)=(-a,-b).如:h(1,3)=(-1,-3).
按照以上變換有:f(g(2,-3))=f(-3,2)=(3,2),那么f(h(5,-3))等于( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

12、在平面直角坐標(biāo)系中,將直線y=-2x+1向下平移4個(gè)單位長(zhǎng)度后.所得直線的解析式為
y=-2x-3

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

13、下列說(shuō)法中,正確的有( 。
①無(wú)限小數(shù)不一定是無(wú)理數(shù)
②矩形具有的性質(zhì)平行四邊形一定具有.
③平面直角坐標(biāo)系中的點(diǎn)與有序?qū)崝?shù)對(duì)是一一對(duì)應(yīng)的.
④一個(gè)數(shù)平方根與這個(gè)數(shù)的立方根相同的數(shù)是0和1.

查看答案和解析>>

同步練習(xí)冊(cè)答案