經(jīng)過(guò)x軸上A(-1,0)、B(3,0)兩點(diǎn)的拋物線y=ax2+bx+c交y軸于點(diǎn)C,設(shè)拋物線的頂點(diǎn)為D,若以DB為直徑的⊙G經(jīng)過(guò)點(diǎn)C,求解下列問(wèn)題:
(1)用含a的代數(shù)式表示出C,D的坐標(biāo);
(2)求拋物線的解析式;
(3)如圖,當(dāng)a<0時(shí),能否在拋物線上找到一點(diǎn)Q,使△BDQ為直角三角形?你能寫(xiě)出Q點(diǎn)的坐標(biāo)嗎?

【答案】分析:(1)可根據(jù)A,B的坐標(biāo),用交點(diǎn)式二次函數(shù)通式來(lái)設(shè)出拋物線的解析式,進(jìn)而可得出D,C的坐標(biāo).
(2)本題的關(guān)鍵是求出a的值.可通過(guò)相似三角形來(lái)求解,過(guò)D作DE⊥y軸于E,易知△DEC∽△COB,可通過(guò)得出的關(guān)于DE,CO,EC,OB的比例關(guān)系式,求出a的值.進(jìn)而可求出拋物線的解析式.
(3)本題要分兩種情況進(jìn)行討論.
①當(dāng)∠BDQ=90°時(shí),此時(shí)DQ是圓G的切線,設(shè)DQ交y軸于M,那么可通過(guò)求直線DM的解析式,然后聯(lián)立拋物線的解析式即可求出Q點(diǎn)的坐標(biāo).
②當(dāng)∠DBQ=90°時(shí),可過(guò)Q作x軸的垂線,設(shè)垂足為F,先設(shè)出Q點(diǎn)的坐標(biāo),然后根據(jù)相似三角形DHB和BFQ得出的關(guān)于DH,BF,BH,F(xiàn)Q的比例關(guān)系式,求出Q點(diǎn)的坐標(biāo).
③當(dāng)∠BQD=90°時(shí),顯然此時(shí)Q,C重合,因此Q點(diǎn)的坐標(biāo)即為C點(diǎn)的坐標(biāo).
綜上所述可得出符合條件的Q點(diǎn)的坐標(biāo).
解答:解:(1)設(shè)拋物線的解析式為y=a(x+1)(x-3)
則y=a(x2-2x-3)=a(x-1)2-4a
則點(diǎn)D的坐標(biāo)為D(1,-4a)
點(diǎn)C的坐標(biāo)為C(0,-3a)

(2)如圖①所示,過(guò)點(diǎn)D作DE⊥y軸于E,如圖①所示:
則有△DEC∽△COB


∴a2=1a=±1
故拋物線的解析式為y=x2-2x-3或y=-x2+2x+3;

(3)a<0時(shí),a=-1,拋物線y=-x2+2x+3,
這時(shí)可以找到點(diǎn)Q,很明顯,點(diǎn)C即在拋物線上,
又在⊙G上,∠BCD=90°,這時(shí)Q與C點(diǎn)重合,點(diǎn)Q坐標(biāo)為Q(0,3).
如圖②,若∠DBQ為90°,作QF⊥y軸于F,DH⊥x軸于H
可證Rt△DHB∽R(shí)t△BFQ

則點(diǎn)Q坐標(biāo)(k,-k2+2k+3)

化簡(jiǎn)為2k2-3k-9=0
即(k-3)(2k+3)=0
解之為k=3或
得Q坐標(biāo):
若∠BDQ為90°,
如圖③,延長(zhǎng)DQ交y軸于M,
作DE⊥y軸于E,DH⊥x軸于H
可證明△DEM∽△DHB
,

,點(diǎn)M的坐標(biāo)為DM所在的直線方程為
與y=-x2+2x+3的解為
得交點(diǎn)坐標(biāo)Q為
即滿足題意的Q點(diǎn)有三個(gè),(0,3),
點(diǎn)評(píng):本題主要考查了二次函數(shù)解析式的確定、相似三角形的判定和應(yīng)用、函數(shù)圖象交點(diǎn)等知識(shí),綜合性強(qiáng),考查學(xué)生分類(lèi)討論,數(shù)形結(jié)合的數(shù)學(xué)思想方法.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知:如圖,拋物線y=ax2+bx+c(a≠O)經(jīng)過(guò)X軸上的兩點(diǎn)A(x1,0)、B(x2,0)和y軸上的點(diǎn)C(0,-
3
2
),⊙P的圓心P在y軸上,且經(jīng)過(guò)B、C兩點(diǎn),若b=
3
a,AB=2
3

(1)求拋物線的解析式;
(2)設(shè)D在拋物線上,且C,D兩點(diǎn)關(guān)于拋物線的對(duì)稱(chēng)軸對(duì)稱(chēng),問(wèn)直線BD是否經(jīng)過(guò)圓心P,精英家教網(wǎng)并說(shuō)明理由;
(3)設(shè)直線BD交⊙P于另一點(diǎn)E,求經(jīng)過(guò)E點(diǎn)的⊙P的切線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知:二次函數(shù)y=x2+2ax-2b+1和y=-x2+(a-3)x+b2-1的圖象都經(jīng)過(guò)x軸上兩個(gè)不同的點(diǎn)M,N,求a,b的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)在平面直角坐標(biāo)系中,入射光線經(jīng)過(guò)x軸上點(diǎn)A(-3,0),由y軸上點(diǎn)B反射,反射光線經(jīng)過(guò)點(diǎn)C(-1,3),則B點(diǎn)的坐標(biāo)是
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,經(jīng)過(guò)x軸上A(-1,0)、B(3,0)兩點(diǎn)的拋物線y=ax2+bx+c(a≠0)交y軸的精英家教網(wǎng)正半軸于點(diǎn)C,設(shè)拋物線的頂點(diǎn)為D.
(1)用含a的代數(shù)式表示出點(diǎn)C、D的坐標(biāo);
(2)若∠BCD=90°,請(qǐng)確定拋物線的解析式;
(3)在(2)的條件下,能否在拋物線上找到另外的點(diǎn)Q,使△BDQ為直角三角形?如果能,請(qǐng)直接寫(xiě)出點(diǎn)Q的坐標(biāo);如不能,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)y=ax2+bx-1(a≠0)的圖象經(jīng)過(guò)y軸上一點(diǎn),則這個(gè)點(diǎn)的坐標(biāo)是
(0,-1)
(0,-1)

查看答案和解析>>

同步練習(xí)冊(cè)答案