如圖1,在Rt△ABC中,∠C=90°,AC=6,BC=8,動(dòng)點(diǎn)P從點(diǎn)A開(kāi)始沿邊AC向點(diǎn)C以1個(gè)單位長(zhǎng)度的速度運(yùn)動(dòng),動(dòng)點(diǎn)Q從點(diǎn)C開(kāi)始沿邊CB向點(diǎn)B以每秒2個(gè)單位長(zhǎng)度的速度運(yùn)動(dòng),過(guò)點(diǎn)P作PD∥BC,交AB于點(diǎn)D,連接PQ分別從點(diǎn)A、C同時(shí)出發(fā),當(dāng)其中一點(diǎn)到達(dá)端點(diǎn)時(shí),另一點(diǎn)也隨之停止運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t秒(t≥0).
(1)直接用含t的代數(shù)式分別表示:QB= _________ ,PD= _________ 
(2)是否存在t的值,使四邊形PDBQ為菱形?若存在,求出t的值;若不存在,說(shuō)明理由.并探究如何改變Q的速度(勻速運(yùn)動(dòng)),使四邊形PDBQ在某一時(shí)刻為菱形,求點(diǎn)Q的速度;
(3)如圖2,在整個(gè)運(yùn)動(dòng)過(guò)程中,求出線段PQ中點(diǎn)M所經(jīng)過(guò)的路徑長(zhǎng).
(1)8﹣2t,t     (2)不存在   當(dāng)點(diǎn)Q的速度為每秒個(gè)單位長(zhǎng)度時(shí),經(jīng)過(guò)秒,四邊形PDBQ是菱形        (3)2

試題分析:(1)根據(jù)題意得:CQ=2t,PA=t,
∴QB=8﹣2t,
∵在Rt△ABC中,∠C=90°,AC=6,BC=8,PD∥BC,
∴∠APD=90°,
∴tanA==,
∴PD=t.
故答案為:(1)8﹣2t,t.
(2)不存在
在Rt△ABC中,∠C=90°,AC=6,BC=8,
∴AB=10
∵PD∥BC,
∴△APD∽△ACB,
,即
∴AD=t,
∴BD=AB﹣AD=10﹣t,
∵BQ∥DP,
∴當(dāng)BQ=DP時(shí),四邊形PDBQ是平行四邊形,
即8﹣2t=,解得:t=
當(dāng)t=時(shí),PD==,BD=10﹣×=6,
∴DP≠BD,
∴?PDBQ不能為菱形.
設(shè)點(diǎn)Q的速度為每秒v個(gè)單位長(zhǎng)度,
則BQ=8﹣vt,PD=t,BD=10﹣t,
要使四邊形PDBQ為菱形,則PD=BD=BQ,
當(dāng)PD=BD時(shí),即t=10﹣t,解得:t=
當(dāng)PD=BQ,t=時(shí),即=8﹣,解得:v=
當(dāng)點(diǎn)Q的速度為每秒個(gè)單位長(zhǎng)度時(shí),經(jīng)過(guò)秒,四邊形PDBQ是菱形.
(3)如圖2,以C為原點(diǎn),以AC所在的直線為x軸,建立平面直角坐標(biāo)系.
依題意,可知0≤t≤4,當(dāng)t=0時(shí),點(diǎn)M1的坐標(biāo)為(3,0),當(dāng)t=4時(shí)點(diǎn)M2的坐標(biāo)為(1,4).
設(shè)直線M1M2的解析式為y=kx+b,

解得
∴直線M1M2的解析式為y=﹣2x+6.
∵點(diǎn)Q(0,2t),P(6﹣t,0)
∴在運(yùn)動(dòng)過(guò)程中,線段PQ中點(diǎn)M3的坐標(biāo)(,t).
把x=代入y=﹣2x+6得y=﹣2×+6=t,
∴點(diǎn)M3在直線M1M2上.
過(guò)點(diǎn)M2做M2N⊥x軸于點(diǎn)N,則M2N=4,M1N=2.
∴M1M2=2
∴線段PQ中點(diǎn)M所經(jīng)過(guò)的路徑長(zhǎng)為2單位長(zhǎng)度.

點(diǎn)評(píng):此題考查了相似三角形的判定與性質(zhì)、平行四邊形的判定與性質(zhì)、菱形的判定與性質(zhì)以及一次函數(shù)的應(yīng)用.此題綜合性很強(qiáng),難度較大,解題的關(guān)鍵是注意數(shù)形結(jié)合思想的應(yīng)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知:點(diǎn)P為正方形ABCD內(nèi)部一點(diǎn),且∠BPC=90°,過(guò)點(diǎn)P的直線分別交邊AB、邊CD于點(diǎn)E、點(diǎn)F.
(1)如圖1,當(dāng)PC=PB時(shí),則SPBE、SPCF SBPC之間的數(shù)量關(guān)系為 _________ ;
(2)如圖2,當(dāng)PC=2PB時(shí),求證:16SPBE+SPCF=4SBPG;
(3)在(2)的條件下,Q為AD邊上一點(diǎn),且∠PQF=90°,連接BD,BD交QF于點(diǎn)N,若Sbpc=80,BE=6.求線段DN的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在平面直角坐標(biāo)系中,O是坐標(biāo)原點(diǎn),點(diǎn)A的坐標(biāo)是(﹣4,0),點(diǎn)B的坐標(biāo)是(0,b)(b>0).P是直線AB上的一個(gè)動(dòng)點(diǎn),作PC⊥x軸,垂足為C.記點(diǎn)P關(guān)于y軸的對(duì)稱點(diǎn)為P´(點(diǎn)P´不在y軸上),連接PP´,P´A,P´C.設(shè)點(diǎn)P的橫坐標(biāo)為a.
(1)當(dāng)b=3時(shí),
①求直線AB的解析式;
②若點(diǎn)P′的坐標(biāo)是(﹣1,m),求m的值;
(2)若點(diǎn)P在第一象限,記直線AB與P´C的交點(diǎn)為D.當(dāng)P´D:DC=1:3時(shí),求a的值;
(3)是否同時(shí)存在a,b,使△P´CA為等腰直角三角形?若存在,請(qǐng)求出所有滿足要求的a,b的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,正方形ABCD中,E、F分別是邊AD、CD上的點(diǎn),DE=CF,AF與BE相交于O,DG⊥AF,垂足為G.
(1)求證:AF⊥BE;
(2)試探究線段AO、BO、GO的長(zhǎng)度之間的數(shù)量關(guān)系;
(3)若GO:CF=4:5,試確定E點(diǎn)的位置.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在矩形ABCD中,AB=6,BC=8,沿直線MN對(duì)折,使A、C重合,直線MN交AC于O.
(1)求證:△COM∽△CBA;    
(2)求線段OM的長(zhǎng)度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,AB是斜靠在墻壁的梯子,梯腳點(diǎn)B距墻角點(diǎn)C有1.4m,,梯子上的點(diǎn)D距墻壁1.2m,梯子每級(jí)之間的距離(如BD)為0.5m,則梯子的長(zhǎng)度是______米。

A. 2          B. 3         C. 4           D. 5

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在,.點(diǎn)是線段邊上的一動(dòng)點(diǎn)(不含、兩端點(diǎn)),連結(jié),作,交線段于點(diǎn)
  
(1)求證:;
(2)設(shè),,請(qǐng)寫(xiě)之間的函數(shù)關(guān)系式,并求的最小值。
(3)點(diǎn)在運(yùn)動(dòng)的過(guò)程中,能否構(gòu)成等腰三角形?若能,求出的長(zhǎng);若不能,請(qǐng)說(shuō)明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,D是△ABC的重心,則下列結(jié)論不正確的是( 。
A.AD=2DEB.AE=2DEC.BE=CED.AD:DE=2:1

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,△ABC與△AEF中,AB=AE,BC=EF,∠B=∠E,AB交EF于D.給出下列結(jié)論:
①∠AFC=∠C;
②DE=CF;
③△ADE∽△FDB;
④∠BFD=∠CAF
其中正確的結(jié)論是        

查看答案和解析>>

同步練習(xí)冊(cè)答案