【題目】一天晚上,李明利用燈光下的影子長(zhǎng)來測(cè)量一路燈D的高度.如圖,當(dāng)在點(diǎn)A處放置標(biāo)桿時(shí),李明測(cè)得直立的標(biāo)桿高AM與影子長(zhǎng)AE正好相等,接著李明沿AC方向繼續(xù)向前走,走到點(diǎn)B處放置同一個(gè)標(biāo)桿,測(cè)得直立標(biāo)桿高BN的影子恰好是線段AB,并測(cè)得AB1.2m,已知標(biāo)桿直立時(shí)的高為1.8m,求路燈的高CD的長(zhǎng).

【答案】路燈高CD5.4米.

【解析】

根據(jù)AMEC,CDEC,BNECEAMA得到MACDBN,從而得到ABN∽△ACD,利用相似三角形對(duì)應(yīng)邊的比相等列出比例式求解即可.

設(shè)CD長(zhǎng)為x米,

AMEC,CDECBNEC,EAMA,

MACDBN,

ECCDx米,

∴△ABN∽△ACD,

,即

解得:x5.4

經(jīng)檢驗(yàn),x5.4是原方程的解,

∴路燈高CD5.4米.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某市射擊隊(duì)甲、乙兩名隊(duì)員在相同的條件下各射耙10次,每次射耙的成績(jī)情況如圖所示:

1)請(qǐng)將下表補(bǔ)充完整:

2)請(qǐng)從下列三個(gè)不同的角度對(duì)這次測(cè)試結(jié)果進(jìn)行分析:

①?gòu)钠骄鶖?shù)和方差相結(jié)合看,  的成績(jī)好些;

②從平均數(shù)和中位數(shù)相結(jié)合看,  的成績(jī)好些;

③若其他隊(duì)選手最好成績(jī)?cè)?/span>9環(huán)左右,現(xiàn)要選一人參賽,你認(rèn)為選誰(shuí)參加,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,O為坐標(biāo)原點(diǎn),四邊形OABC為矩形,A200),C0,8),點(diǎn)DOA的中點(diǎn),點(diǎn)P在邊BC上運(yùn)動(dòng),當(dāng)ODP是腰長(zhǎng)為10的等腰三角形時(shí),則P點(diǎn)的坐標(biāo)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,已知拋物線y=﹣x2+bx+cy軸于點(diǎn)A(0,4),交x軸于點(diǎn)B(4,0),點(diǎn)P是拋物線上一動(dòng)點(diǎn),過點(diǎn)Px軸的垂線PQ,過點(diǎn)AAQPQ于點(diǎn)Q,連接AP.

(1)填空:拋物線的解析式為   ,點(diǎn)C的坐標(biāo)   ;

(2)點(diǎn)P在拋物線上運(yùn)動(dòng),若AQP∽△AOC,求點(diǎn)P的坐標(biāo);

(3)如圖2,當(dāng)點(diǎn)P位于拋物線的對(duì)稱軸的右側(cè),若將APQ沿AP對(duì)折,點(diǎn)Q的對(duì)應(yīng)點(diǎn)為點(diǎn)Q',請(qǐng)直接寫出當(dāng)點(diǎn)Q'落在坐標(biāo)軸上時(shí)點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,拋物線y=﹣x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C,連接ACBC

1)求線段AC的長(zhǎng);

2)如圖2,E為拋物線的頂點(diǎn),FAC上方的拋物線上一動(dòng)點(diǎn),M、N為直線AC上的兩動(dòng)點(diǎn)(MN的左側(cè)),且MN4,作FPAC于點(diǎn)PFQy軸交AC于點(diǎn)Q.當(dāng)△FPQ的面積最大時(shí),連接EF、EN、FM,求四邊形ENMF周長(zhǎng)的最小值.

3)如圖3,將△BCO沿x軸負(fù)方向平移個(gè)單位后得△B'C'O',再將△B'C'O'繞點(diǎn)O'順時(shí)針旋轉(zhuǎn)α度,得到△BCO'(其中0°<α180°),旋轉(zhuǎn)過程中直線BC″與直線AC交于點(diǎn)G,與x軸交于點(diǎn)H,當(dāng)△AGH是等腰三角形時(shí),求α的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】問題:如圖(1),點(diǎn)E、F分別在正方形ABCD的邊BC、CD上,∠EAF=45°,試判斷BEEF、FD之間的數(shù)量關(guān)系.

【發(fā)現(xiàn)證明】小聰把ABE繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°ADG,從而發(fā)現(xiàn)EF=BE+FD,請(qǐng)你利用圖(1)證明上述結(jié)論.

【類比引申】如圖(2),四邊形ABCD中,∠BAD≠90°AB=AD,B+D=180°,點(diǎn)E、F分別在邊BC、CD上,則當(dāng)∠EAF與∠BAD滿足  關(guān)系時(shí),仍有EF=BE+FD;請(qǐng)證明你的結(jié)論.

【探究應(yīng)用】如圖(3),在某公園的同一水平面上,四條通道圍成四邊形ABCD.已知AB=AD=80米,∠B=60°,ADC=120°,BAD=150°,道路BC、CD上分別有景點(diǎn)EF,且AEAD,DF=401米,現(xiàn)要在E、F之間修一條筆直道路,求這條道路EF的長(zhǎng).(結(jié)果取整數(shù),參考數(shù)據(jù): =1.41, =1.73

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某課外小組的同學(xué)們?cè)谏鐣?huì)實(shí)踐活動(dòng)中調(diào)查了20戶家庭萊月的用電量,如表所示:

用電量(千瓦時(shí))

120

140

160

180

200

戶數(shù)

2

3

6

7

2

則這20戶家庭該月用電量的眾數(shù)和中位數(shù)、平均數(shù)分別是( )

A. 180160,164B. 160180;164

C. 160160,164D. 180,180164

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我市某童裝專賣店在銷售中發(fā)現(xiàn),一款童裝每件進(jìn)價(jià)為40元,若銷售價(jià)為60元,每天可售出20件,為迎接雙十一,專賣店決定采取適當(dāng)?shù)慕祪r(jià)措施,以擴(kuò)大銷售量,經(jīng)市場(chǎng)調(diào)查發(fā)現(xiàn),如果每件童裝降價(jià)1元,那么平均可多售出2設(shè)每件童裝降價(jià)x時(shí),平均每天可盈利y元.

寫出yx的函數(shù)關(guān)系式;

當(dāng)該專賣店每件童裝降價(jià)多少元時(shí),平均每天盈利400元?

該專賣店要想平均每天盈利600元,可能嗎?請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在建立了平面直角坐標(biāo)系的正方形網(wǎng)格中,A2,2),B1,0),C3,1

1)畫出ABC關(guān)于x軸對(duì)稱的A1B1C1

2)畫出將ABC繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)90°,所得的A2B2C2.并直接寫出A2點(diǎn)的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案