如圖,已知AB=AC,
(1)若CE=BD,求證:GE=GD;
(2)若CE=m•BD(m為正數(shù)),試猜想GE與GD有何關系.(只寫結論,不證明)

【答案】分析:(1)要證GE=GD,需證△GDF≌△GEC,由已知條件可根據(jù)AAS判定.
(2)若CE=m•BD(m為正數(shù)),那么GE=m•GD.
解答:證明:(1)過D作DF∥CE,交BC于F,
則∠E=∠GDF.
∵AB=AC,
∴∠ACB=∠ABC
∵DF∥CE,
∴∠DFB=∠ACB,
∴∠DFB=∠ACB=∠ABC.
∴DF=DB.
∵CE=BD,
∴DF=CE,
在△GDF和△GEC中,

∴△GDF≌△GEC(AAS).
∴GE=GD.

(2)GE=m•GD.
點評:本題考查三角形全等的判定方法,判定兩個三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.本題的輔助線是解決題目的關鍵.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,已知AB⊥AC,AD⊥AE,AB=AC,AD=AE,則∠BFD的度數(shù)是( 。
A、60°B、90°C、45°D、120°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

10、如圖,已知AB=AC,D是BC的中點,E是AD上的一點,圖中全等三角形有幾對(  )

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

26、如圖,已知AB=AC,AD=AE.求證BD=CE.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

2、如圖,已知AB=AC,AD=AE,BD=EC,則圖中有
2
對全等三角形,它們是
△ABD≌△AEC
;
△ABE≌△ADC.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知AB=AC,BC=CD=AD,求∠B的值.

查看答案和解析>>

同步練習冊答案