【題目】如圖,在矩形ABCD中,AB=3,AD=6,點(diǎn)E在AD邊上,且AE=4,EF⊥BE交CD于點(diǎn)F.
(1)求證:△ABE∽△DEF;
(2)求EF的長(zhǎng).
【答案】(1)見(jiàn)解析;(2).
【解析】試題分析:(1)根據(jù)矩形的性質(zhì)可得∠A=∠D=90°,再根據(jù)同角的余角相等求出∠1=∠3,然后利用兩角對(duì)應(yīng)相等,兩三角形相似證明;
(2)利用勾股定理列式求出BE,再求出DE,然后根據(jù)相似三角形對(duì)應(yīng)邊成比例列式求解即可.
試題解析:(1)證明:在矩形ABCD中,∠A=∠D=90°,
∴∠1+∠2=90°,
∵EF⊥BE,
∴∠2+∠3=180°-90°=90°,
∴∠1=∠3,
又∵∠A=∠D=90°,
∴△ABE∽△DEF;
(2)∵AB=3,AE=4,
∴BE==5,
∵AD=6,AE=4,
∴DE=AD-AE=6-4=2,
∵△ABE∽△DEF,
∴,即,
解得EF=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,某數(shù)學(xué)活動(dòng)小組選定測(cè)量小河對(duì)岸大樹(shù)BC的高度,他們?cè)谛逼律?/span>D處測(cè)得大樹(shù)頂端B的仰角是30°,朝大樹(shù)方向下坡走6米到達(dá)坡底A處,在A處測(cè)得大樹(shù)頂端B的仰角是45°,若坡角∠FAE=30°,求大樹(shù)的高度(結(jié)果保留根號(hào)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我們知道,勾股定理反映了直角三角形三條邊的關(guān)系: a2+b2=c2, 而a2, b2, c2又可以看成是以a,b, c為邊長(zhǎng)的正方形的面積.如圖,在Rt△ABC中,∠ACB=90°,BC=a, AC=b,O為AB的中點(diǎn).分別以AC,BC 為邊向△ABC外作正方形ACFG,BCED,連結(jié)OF, EF, OE,則△OEF的面積為( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,OC是△ABC中AB邊的中線(xiàn),∠ABC=36°,點(diǎn)D為OC上一點(diǎn),如果OD=kOC,過(guò)D作DE∥CA交于BA點(diǎn)E,點(diǎn)M是DE的中點(diǎn),將△ODE繞點(diǎn)O順時(shí)針旋轉(zhuǎn)α度(其中0°<α<180°)后,射線(xiàn)OM交直線(xiàn)BC于點(diǎn)N.
(1)如果△ABC的面積為26,求△ODE的面積(用k的代數(shù)式表示);
(2)當(dāng)N和B不重合時(shí),請(qǐng)?zhí)骄俊?/span>ONB的度數(shù)y與旋轉(zhuǎn)角α的度數(shù)之間的函數(shù)關(guān)系式;
(3)寫(xiě)出當(dāng)△ONB為等腰三角形時(shí),旋轉(zhuǎn)角α的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某服裝店老板到廠家選購(gòu)、兩種品牌的羽絨服,品牌羽絨服每件進(jìn)價(jià)比品牌羽絨服每件進(jìn)價(jià)多元,若用元購(gòu)進(jìn)種羽絨服的數(shù)量是用元購(gòu)進(jìn)種羽絨服數(shù)量的倍.
(1)求、兩種品牌羽絨服每件進(jìn)價(jià)分別為多少元?
(2)若品牌羽絨服每件售價(jià)為元,品牌羽絨服每件售價(jià)為元,服裝店老板決定一次性購(gòu)進(jìn)、兩種品牌羽絨服共件,在這批羽絨服全部出售后所獲利潤(rùn)不低于元,則最少購(gòu)進(jìn)品牌羽絨服多少件?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在美化校園的活動(dòng)中,某興趣小組想借助如圖所示的直角墻角(兩邊足夠長(zhǎng)),用26m長(zhǎng)的籬笆圍成一個(gè)矩形花園ABCD(籬笆只圍AB,BC兩邊),設(shè)BC=x m.
(1)若矩形花園ABCD的面積為165m2,求 x的值;
(2)若在P處有一棵樹(shù),樹(shù)中心P與墻CD,AD的距離分別是13m和6m,要將這棵樹(shù)圍在花園內(nèi)(考慮到樹(shù)以后的生長(zhǎng),籬笆圍矩形ABCD時(shí),需將以P為圓心,1為半徑的圓形區(qū)域圍在內(nèi)),求矩形花園ABCD面積S的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知點(diǎn)在反比例函數(shù)的圖象上,過(guò)點(diǎn)作軸,垂足為,直線(xiàn)經(jīng)過(guò)點(diǎn),與軸交于點(diǎn),且,.
(1)求反比例函數(shù)和一次函數(shù)的表達(dá)式;
(2)直接寫(xiě)出關(guān)于的不等式的解集.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線(xiàn)y=ax2﹣ x+c(a≠0)的圖象與x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C(0,﹣2),已知B點(diǎn)坐標(biāo)為(4,0).
(1)求拋物線(xiàn)的解析式;
(2)若點(diǎn)M是線(xiàn)段BC下方的拋物線(xiàn)上一點(diǎn),記點(diǎn)M到線(xiàn)段BC的距離為d,當(dāng)d取最大值時(shí),求出此時(shí)M點(diǎn)的坐標(biāo);
(3)若點(diǎn)P是拋物線(xiàn)上一點(diǎn),點(diǎn)E是直線(xiàn)y=﹣x上的動(dòng)點(diǎn),是否存在點(diǎn)P、E,使以點(diǎn)A,點(diǎn)B,點(diǎn)P,點(diǎn)E為頂點(diǎn)的四邊形是平行四邊形?若存在,請(qǐng)直接寫(xiě)出點(diǎn)E坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一節(jié)數(shù)學(xué)課后,老師布置了一道課后練習(xí)題:
如圖1,是的直徑,點(diǎn)在上,,垂足為,,分別交、于點(diǎn)、.求證:.
圖1 圖2
(1)本題證明的思路可用下列框圖表示:
根據(jù)上述思路,請(qǐng)你完整地書(shū)寫(xiě)本題的證明過(guò)程.
(2)如圖2,若點(diǎn)和點(diǎn)在的兩側(cè),、的延長(zhǎng)線(xiàn)交于點(diǎn),的延長(zhǎng)線(xiàn)交于點(diǎn),其余條件不變,(1)中的結(jié)論還成立嗎?請(qǐng)說(shuō)明理由;
(3)在(2)的條件下,若,,求
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com