【題目】如圖,在矩形ABCD中,AB=3,AD=6,點(diǎn)EAD邊上,且AE=4,EFBECD于點(diǎn)F

1)求證:ABE∽△DEF;

2)求EF的長(zhǎng).

【答案】1)見(jiàn)解析;(2

【解析】試題分析:(1)根據(jù)矩形的性質(zhì)可得∠A=∠D=90°,再根據(jù)同角的余角相等求出∠1=∠3,然后利用兩角對(duì)應(yīng)相等,兩三角形相似證明;
(2)利用勾股定理列式求出BE,再求出DE,然后根據(jù)相似三角形對(duì)應(yīng)邊成比例列式求解即可.

試題解析:1)證明:在矩形ABCD中,∠A=D=90°
∴∠1+2=90°,
EFBE
∴∠2+3=180°-90°=90°,
∴∠1=3,
又∵∠A=D=90°,
∴△ABE∽△DEF;

2AB=3AE=4,
BE==5,
AD=6AE=4,
DE=AD-AE=6-4=2
∵△ABE∽△DEF,
,
解得EF=

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,某數(shù)學(xué)活動(dòng)小組選定測(cè)量小河對(duì)岸大樹(shù)BC的高度,他們?cè)谛逼律?/span>D處測(cè)得大樹(shù)頂端B的仰角是30°,朝大樹(shù)方向下坡走6米到達(dá)坡底A處,在A處測(cè)得大樹(shù)頂端B的仰角是45°,若坡角∠FAE=30°,求大樹(shù)的高度(結(jié)果保留根號(hào)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】我們知道,勾股定理反映了直角三角形三條邊的關(guān)系: a2+b2=c2 a2, b2, c2又可以看成是以ab, c為邊長(zhǎng)的正方形的面積.如圖,在RtABC中,∠ACB=90°,BC=a AC=b,OAB的中點(diǎn).分別以AC,BC 為邊向ABC外作正方形ACFG,BCED,連結(jié)OF, EF, OE,則OEF的面積為( )

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,OC是△ABCAB邊的中線(xiàn),∠ABC36°,點(diǎn)DOC上一點(diǎn),如果ODkOC,過(guò)DDECA交于BA點(diǎn)E,點(diǎn)MDE的中點(diǎn),將△ODE繞點(diǎn)O順時(shí)針旋轉(zhuǎn)α度(其中0°<α180°)后,射線(xiàn)OM交直線(xiàn)BC于點(diǎn)N

1)如果△ABC的面積為26,求△ODE的面積(用k的代數(shù)式表示);

2)當(dāng)NB不重合時(shí),請(qǐng)?zhí)骄俊?/span>ONB的度數(shù)y與旋轉(zhuǎn)角α的度數(shù)之間的函數(shù)關(guān)系式;

3)寫(xiě)出當(dāng)△ONB為等腰三角形時(shí),旋轉(zhuǎn)角α的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某服裝店老板到廠家選購(gòu)兩種品牌的羽絨服,品牌羽絨服每件進(jìn)價(jià)比品牌羽絨服每件進(jìn)價(jià)多元,若用元購(gòu)進(jìn)種羽絨服的數(shù)量是用元購(gòu)進(jìn)種羽絨服數(shù)量的.

1)求、兩種品牌羽絨服每件進(jìn)價(jià)分別為多少元?

2)若品牌羽絨服每件售價(jià)為元,品牌羽絨服每件售價(jià)為元,服裝店老板決定一次性購(gòu)進(jìn)、兩種品牌羽絨服共件,在這批羽絨服全部出售后所獲利潤(rùn)不低于元,則最少購(gòu)進(jìn)品牌羽絨服多少件?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在美化校園的活動(dòng)中,某興趣小組想借助如圖所示的直角墻角(兩邊足夠長(zhǎng)),用26m長(zhǎng)的籬笆圍成一個(gè)矩形花園ABCD(籬笆只圍AB,BC兩邊),設(shè)BCx m

1)若矩形花園ABCD的面積為165m2,求 x的值;

2)若在P處有一棵樹(shù),樹(shù)中心P與墻CDAD的距離分別是13m6m,要將這棵樹(shù)圍在花園內(nèi)(考慮到樹(shù)以后的生長(zhǎng),籬笆圍矩形ABCD時(shí),需將以P為圓心,1為半徑的圓形區(qū)域圍在內(nèi)),求矩形花園ABCD面積S的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知點(diǎn)在反比例函數(shù)的圖象上,過(guò)點(diǎn)軸,垂足為,直線(xiàn)經(jīng)過(guò)點(diǎn),與軸交于點(diǎn),且,.

(1)求反比例函數(shù)和一次函數(shù)的表達(dá)式;

(2)直接寫(xiě)出關(guān)于的不等式的解集.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線(xiàn)y=ax2 x+ca≠0)的圖象與x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C0,﹣2),已知B點(diǎn)坐標(biāo)為(4,0).

1)求拋物線(xiàn)的解析式;

2)若點(diǎn)M是線(xiàn)段BC下方的拋物線(xiàn)上一點(diǎn),記點(diǎn)M到線(xiàn)段BC的距離為d,當(dāng)d取最大值時(shí),求出此時(shí)M點(diǎn)的坐標(biāo);

3)若點(diǎn)P是拋物線(xiàn)上一點(diǎn),點(diǎn)E是直線(xiàn)y=x上的動(dòng)點(diǎn),是否存在點(diǎn)P、E,使以點(diǎn)A,點(diǎn)B,點(diǎn)P,點(diǎn)E為頂點(diǎn)的四邊形是平行四邊形?若存在,請(qǐng)直接寫(xiě)出點(diǎn)E坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一節(jié)數(shù)學(xué)課后,老師布置了一道課后練習(xí)題:

如圖1的直徑,點(diǎn)上,,垂足為,分別交、于點(diǎn)、.求證:.

1 2

1)本題證明的思路可用下列框圖表示:

根據(jù)上述思路,請(qǐng)你完整地書(shū)寫(xiě)本題的證明過(guò)程.

2)如圖2,若點(diǎn)和點(diǎn)的兩側(cè),、的延長(zhǎng)線(xiàn)交于點(diǎn)的延長(zhǎng)線(xiàn)交于點(diǎn),其余條件不變,(1)中的結(jié)論還成立嗎?請(qǐng)說(shuō)明理由;

3)在(2)的條件下,若,,求的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案