(2012•張家界)順次連接矩形四邊中點(diǎn)所得的四邊形一定是( 。
分析:因?yàn)轭}中給出的條件是中點(diǎn),所以可利用三角形中位線(xiàn)性質(zhì),以及矩形對(duì)角線(xiàn)相等去證明四條邊都相等,從而說(shuō)明是一個(gè)菱形.
解答:解:連接AC、BD,
在△ABD中,
∵AH=HD,AE=EB
∴EH=
1
2
BD,
同理FG=
1
2
BD,HG=
1
2
AC,EF=
1
2
AC,
又∵在矩形ABCD中,AC=BD,
∴EH=HG=GF=FE,
∴四邊形EFGH為菱形.
故選C.
點(diǎn)評(píng):本題考查了菱形的判定,菱形的判別方法是說(shuō)明一個(gè)四邊形為菱形的理論依據(jù),常用三種方法:①定義,②四邊相等,③對(duì)角線(xiàn)互相垂直平分.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•張家界)已知m和n是方程2x2-5x-3=0的兩根,則
1
m
+
1
n
=
-
5
3
-
5
3

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•張家界)已知圓錐的底面直徑和母線(xiàn)長(zhǎng)都是10cm,則圓錐的側(cè)面積為
50πcm2
50πcm2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•張家界)如圖,在方格紙中,以格點(diǎn)連線(xiàn)為邊的三角形叫格點(diǎn)三角形,請(qǐng)按要求完成下列操作:先將格點(diǎn)△ABC向右平移4個(gè)單位得到△A1B1C1,再將△A1B1C1繞點(diǎn)C1點(diǎn)旋轉(zhuǎn)180°得到△A2B2C2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•張家界)先化簡(jiǎn):
2a-4
a2-4
÷
2a
a+2
+1
,再用一個(gè)你最喜歡的數(shù)代替a計(jì)算結(jié)果.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•張家界)如圖,拋物線(xiàn)y=-x2+
5
3
3
x+2與x軸交于C、A兩點(diǎn),與y軸交于點(diǎn)B,點(diǎn)O關(guān)于直線(xiàn)AB的對(duì)稱(chēng)點(diǎn)為D.
(1)分別求出點(diǎn)A、點(diǎn)C的坐標(biāo);
(2)求直線(xiàn)AB的解析式;
(3)若反比例函數(shù)y=
k
x
的圖象過(guò)點(diǎn)D,求k的取值;
(4)現(xiàn)有兩動(dòng)點(diǎn)P、Q同時(shí)從點(diǎn)A出發(fā),分別沿AB、AO方向向B、O移動(dòng),點(diǎn)P每秒移動(dòng)1個(gè)單位,點(diǎn)Q每秒移動(dòng)
1
2
個(gè)單位,設(shè)△POQ的面積為S,移動(dòng)時(shí)間為t,問(wèn):在P、Q移動(dòng)過(guò)程中,S是否存在最大值?若存在,求出這個(gè)最大值,并求出此時(shí)的t值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案