【題目】如圖,二次函數(shù)的圖像與x軸交于A,B兩點(點B在點A左側),與y軸負半軸相交于點C,且tan∠ABC=3,
(1)求該二次函數(shù)的解析式;
(2)設E是位于第四象限拋物線上的一個動點,過E作x軸的平行線交拋物線于另一點F,過點F作FG垂直于x軸于點G,再過點E作EH垂直于x軸于點H,得到矩形EFGH,則在點E運動過程中,當矩形EFGH為正方形時,求出該正方形的邊長;
(3)設點P是x軸下方的拋物線上的一個動點,連接PA、PC,求△PAC面積的取值范圍,當△PAC面積為整數(shù)時,這樣的△PAC有幾個?
【答案】(1);(2);(3),這樣的有11個
【解析】
(1)拋物線解析式為,求出點A,B的坐標,根據(jù)求出點C的坐標,代入拋物線解析式求解即可;
(2)拋物線的對稱軸為直線,設,分兩種情況,當與當,根據(jù)列式求解;
(3)設,分兩種情況考慮,當時,由于S△ABC=6,可求出△PAC面積的取值范圍,當時,作軸交于點,根據(jù)直線的解析式可得出點,根據(jù)列式求解,進而得解.
解:(1)拋物線解析式為,
,,
,
,
,
把代入得,
解得,,
所以二次函數(shù)解析式為,即;
(2)拋物線的對稱軸為直線,設,
當時,如圖1,,,
矩形為正方形,
,即,
整理得,,
解得,(舍去),(舍去);
當時,如圖2,,,
矩形為正方形,
,即,
整理得,,
解得,(舍去),
此時正方形的邊長為;
綜上所述,正方形的邊長為;
(3)設,
當時,,
,
當時,作軸交于點,如圖3,易得直線的解析式為,則,
,
,
當時,的面積的最大值為,即,
綜上所述,,
面積為整數(shù)時,它的值為1、2、3、4、5,即有11個.
科目:初中數(shù)學 來源: 題型:
【題目】“賞中華詩詞,尋文化基因,品生活之美”,某校舉辦了首屆“中國詩詞大會”,經(jīng)選拔后有50名學生參加決賽,這50名學生同時默寫50首古詩詞,若每正確默寫出一首古詩詞得2分,根據(jù)測試成績繪制出部分頻數(shù)分布表和部分頻數(shù)分布直方圖如圖表.
請結合圖表完成下列各題:
(1)① 表中a的值為 ;
② 把頻數(shù)分布直方圖補充完整;
(2)若測試成績不低于80分為優(yōu)秀,則本次測試的優(yōu)秀率是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】學校今年組織學生參加志愿者活動,活動分為甲、乙、丙三組進行.下面的條形統(tǒng)計圖和扇形統(tǒng)計圖反映了學生參加活動的報名情況,請你根據(jù)圖中的信息,解答下列問題:
(1)若在參加活動的學生中隨機抽取一名學生,則抽到乙組學生的概率是
(2)今年參加志愿者共 人,并把條形統(tǒng)計圖補充完整;
(3)學校兩年前參加志愿者的總人數(shù)是810人,若這兩年的年增長率相同,求這個年增長率.(精確到1%)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知矩形ABCD的對角線AC、BD相交于點O,過O點作OE⊥AC,交AB于E,若BC=4,△AOE的面積是5,則下列說法錯誤的是( )
A.AE=5B.∠BOE=∠BCEC.CE⊥OBD.sin∠BOE=0.6
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖(1),點P、Q分別是邊長為4cm的等邊△ABC的邊AB、BC上的動點,點P從頂點A,點Q從頂點B同時出發(fā),且它們的速度都是1cm/s
(1)設運動時間是t,則當t=__________s時,△PBQ是直角三角形.
(2)連接AQ、CP交于點M,則在P、Q運動的過程中,∠CMQ的大小變化嗎?若變化,則說明理由,若不變,則求出它的度數(shù);
(3)如圖(2),若P,Q在運動到終點后繼續(xù)在射線AB、BC上運動,直線AQ、CP交點為M,則∠CMQ的大小變化嗎?若變化,則說明理由,若不變,則求出它的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形ABCD的邊長為1,對角線AC、BD交于點O,E是BC延長線上一點,且AC=EC,連接AE交BD于點P.
(1)求∠DAE的度數(shù);
(2)求BP的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,以(1,0)為圓心的⊙P與y軸相切于原點O,過點A(-1,0)的直線AB與⊙P相切于點B.
(1)求AB的長.
(2)求AB、OA與所圍成的陰影部分面積.
(3)求直線AB的解析式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,⊙O的直徑AB=26,P是AB上(不與點A、B重合)的任一點,點C、D為⊙O上的兩點,若∠APD=∠BPC,則稱∠CPD為直徑AB的“回旋角”.
(1)若∠BPC=∠DPC=60°,則∠CPD是直徑AB的“回旋角”嗎?并說明理由;
(2)若的長為π,求“回旋角”∠CPD的度數(shù);
(3)若直徑AB的“回旋角”為120°,且△PCD的周長為24+13,直接寫出AP的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AC是⊙O的直徑,弦BD⊥AO于E,連接BC,過點O作OF⊥BC于F,若BD=8cm,AE=2cm,則OF的長度是( )
A. 3cm B. cm C. 2.5cm D. cm
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com