(2004•西藏)圖象經(jīng)過點A(3,-2)的正比例函數(shù)的解析式為
y=-
2
3
x
y=-
2
3
x
分析:首先設(shè)正比例函數(shù)解析式為y=kx(k≠0),再把(3,-2)點代入函數(shù)解析式,算出k的值,即可得到答案.
解答:解:設(shè)正比例函數(shù)解析式為y=kx(k≠0),
∵過點(3,-2),
∴-2=k×3,
解得k=-
2
3
,
故正比例函數(shù)解析式為:y=-
2
3
x,
故答案為:y=-
2
3
x.
點評:此題主要考查了利用待定系數(shù)法求正比例函數(shù)解析式,關(guān)鍵是掌握凡是函數(shù)圖象經(jīng)過的點,必能滿足解析式.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2004•西藏)如圖,P是⊙O外一點,PO的延長線交⊙O于C,AB是⊙O的弦,且AB⊥PC,連結(jié)PA、PB,根據(jù)這些已知條件,不再添加輔助線,寫出你能得出的三個結(jié)論:
AD=BD,
AC
=
BC
,AP=BP
AD=BD,
AC
=
BC
,AP=BP

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2004•西藏)如圖,在大街的兩側(cè)分別有甲、乙兩棟樓房AB、CD,已知甲樓AB的高為30cm,在樓頂A處測得乙樓CD的樓頂C的仰角(即圖中∠EAC)為30°,測得乙樓樓底D的俯角(即圖中∠EAD)為45°,求乙樓的高CD(精確到1m,參考數(shù)據(jù)
2
=1.414,
3
=1.732).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2004•西藏)已知,如圖,直線y=8-2x與y軸交于點A,與x軸交于點B,直線y=x+b與y軸交于點C,與x軸交于點D,如果兩直線交于點P,且AC:CO=3:5(AO>CO).
(1)求點A、B的坐標(biāo);
(2)求四邊形COBP的面積S.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2004•西藏)已知,如圖,P是⊙O外一點,PC切⊙O于點C,割線PO交⊙O于點B、A,且AC=PC.
(1)求證:△PBC≌AOC;
(2)如果PB=2,點M在⊙O的下半圈上運動(不與A、B重合),求當(dāng)△ABM的面積最大時,AC•AM的值.

查看答案和解析>>

同步練習(xí)冊答案