【題目】在坐標(biāo)平面內(nèi),從點(x,y)移動到點(x+1,y+2)的運動稱為一次A類跳馬,從點(x,y)移動到點(x+2,y+1)的運動稱為一次B類跳馬.現(xiàn)在從原點開始出發(fā),連續(xù)10次跳馬,每次跳馬采取A類或B類跳馬,最后恰好落在直線上,則最后落馬的坐標(biāo)是_______.
【答案】(12,18).
【解析】
根據(jù)一次A類跳馬橫坐標(biāo)加1,縱坐標(biāo)加2,一次B類跳馬橫坐標(biāo)加,2,縱坐標(biāo)加1,設(shè)連續(xù)10次跳馬中A類跳馬a次,B類跳馬b次,可得從原點開始出發(fā),連續(xù)10次跳馬后的坐標(biāo)是(a+2b,2a+b), 根據(jù)題意可列方程組 ,解方程求出a、b的值即可得最后落馬的坐標(biāo).
解:由題意得,次A類跳馬橫坐標(biāo)加1,縱坐標(biāo)加2,一次B類跳馬橫坐標(biāo)加,2,縱坐標(biāo)加1,
設(shè)連續(xù)10次跳馬中A類跳馬a次,B類跳馬b次,則從原點開始出發(fā),連續(xù)10次跳馬后的坐標(biāo)是(a+2b,2a+b), 根據(jù)題意得
解得
a+2b=12,2a+b=18,
∴10次跳馬后最后落馬的坐標(biāo)是(12,18).
故答案為:(12,18).
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,Rt△ABO的頂點A是雙曲線y=與直線y=-x-(k+1)在第二象限的交點.AB⊥x軸于B,且S△ABO=.
(1)求這兩個函數(shù)的解析式;
(2)求直線與雙曲線的兩個交點A.C的坐標(biāo)和△AOC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y=﹣x+4的圖象與反比例函數(shù)y=(k為常數(shù),且k≠0)的圖象交于A(1,a),B兩點.
(1)求反比例函數(shù)的表達式及點B的坐標(biāo);
(2)在x軸上找一點P,使PA+PB的值最小,求滿足條件的點P的坐標(biāo)及△PAB的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖:在△ABC中,∠C=90°,AD是∠BAC的平分線,DE⊥AB于E,F(xiàn)在AC上,BD=DF;
證明:(1)CF=EB.
(2)AB=AF+2EB.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,數(shù)軸上A,B兩點對應(yīng)的有理數(shù)分別為xA=﹣5和xB=6,動點P從點A出發(fā),以每秒1個單位的速度沿數(shù)軸在A,B之間往返運動,同時動點Q從點B出發(fā),以每秒2個單位的速度沿數(shù)軸在B,A之間往返運動.設(shè)運動時間為t秒.
(1)當(dāng)t=2時,點P對應(yīng)的有理數(shù)xP=______,PQ=______;
(2)當(dāng)0<t≤11時,若原點O恰好是線段PQ的中點,求t的值;
(3)我們把數(shù)軸上的整數(shù)對應(yīng)的點稱為“整點”,當(dāng)P,Q兩點第一次在整點處重合時,直接寫出此整點對應(yīng)的數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下表是某校九年級(1)班20名學(xué)生某次數(shù)學(xué)測驗的成績統(tǒng)計表:
成績(分) | 60 | 70 | 80 | 90 | 100 |
人數(shù)(人) | 1 | 5 | x | y | 2 |
(1)若這20名學(xué)生成績的平均分數(shù)為82分,求x和y的值;
(2)在(1)的條件下,設(shè)這20名學(xué)生本次測驗成績的眾數(shù)為a,中位數(shù)為b,求a,b的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】a,b分別是數(shù)軸上兩個不同的點A,B所表示的有理數(shù),且=5,=2,A,B兩點在數(shù)軸上的位置如圖所示:
(1) 試確定數(shù)a,b;
(2) A,B兩點相距多少個單位長度?
(3)若C點在數(shù)軸上,C點B點的距離是C點到A點距離的,求C點表示的數(shù);
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商店購進甲、乙兩種商品,已知每件甲種商品的價格比每件乙種商品的價格貴10元,用350元購買甲種商品的件數(shù)恰好與用300元購買乙種商品的件數(shù)相同.
(1)求甲、乙兩種商品每件的價格各是多少元?
(2)計劃購買這兩種商品共50件,且投入的經(jīng)費不超過3200元,那么,最多可購買多少件甲種商品?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com