精英家教網 > 初中數學 > 題目詳情
(2006•淮安)小明放學回家后,問爸爸媽媽小牛隊與太陽隊籃球比賽的結果.爸爸說:“本場比賽太陽隊的納什比小牛隊的特里多得了12分.”媽媽說:“特里得分的兩倍與納什得分的差大于10,納什得分的兩倍比特里得分的三倍還多.”爸爸又說:“如果特里得分超過20分,則小牛隊贏;否則太陽隊贏.”請你幫小明分析一下,究竟是哪個隊贏.本場比賽特里、納什各得了多少分?
【答案】分析:關鍵描述語是:特里得分的兩倍與納什得分的差大于10,納什得分的兩倍比特里得分的三倍還多.不等關系為:特里得分×2-納什得分>10;納什得分×2>特里得分×3.根據這兩個不等關系就可以列出不等式組,從而求解.
解答:解:設本場比賽特里得了x分,則納什得了(x+12)分,根據題意,得
解得22<x<24.
因為x為整數,故x=23,23+12=35.
23>20.
答:小牛隊贏了,特里得了23分,納什得了35分.
點評:解決本題的關鍵是讀懂題意,找到符合題意的不等式組.并且要注意未知數的取值是正整數.
練習冊系列答案
相關習題

科目:初中數學 來源:2006年全國中考數學試題匯編《不等式與不等式組》(06)(解析版) 題型:解答題

(2006•淮安)小明放學回家后,問爸爸媽媽小牛隊與太陽隊籃球比賽的結果.爸爸說:“本場比賽太陽隊的納什比小牛隊的特里多得了12分.”媽媽說:“特里得分的兩倍與納什得分的差大于10,納什得分的兩倍比特里得分的三倍還多.”爸爸又說:“如果特里得分超過20分,則小牛隊贏;否則太陽隊贏.”請你幫小明分析一下,究竟是哪個隊贏.本場比賽特里、納什各得了多少分?

查看答案和解析>>

科目:初中數學 來源:2010年浙江省杭州市蕭山區(qū)中考數學模擬試卷20(回瀾初中 潘曉華)(解析版) 題型:解答題

(2006•淮安)閱讀材料:如圖(一),△ABC的周長為l,內切圓O的半徑為r,連接OA、OB、OC,△ABC被劃分為三個小三角形,用S△ABC表示△ABC的面積.

∵S△ABC=S△OAB+S△OBC+S△OCA
又∵S△OAB=AB•r,S△OBC=BC•r,S△OCA=CA•r
∴S△ABC=AB•r+BC•r+CA•r=l•r(可作為三角形內切圓半徑公式)
(1)理解與應用:利用公式計算邊長分為5、12、13的三角形內切圓半徑;
(2)類比與推理:若四邊形ABCD存在內切圓(與各邊都相切的圓,如圖(二))且面積為S,各邊長分別為a、b、c、d,試推導四邊形的內切圓半徑公式;
(3)拓展與延伸:若一個n邊形(n為不小于3的整數)存在內切圓,且面積為S,各邊長分別為a1、a2、a3、…、an,合理猜想其內切圓半徑公式(不需說明理由).

查看答案和解析>>

科目:初中數學 來源:2006年江蘇省淮安市中考數學試卷(課標卷)(解析版) 題型:解答題

(2006•淮安)閱讀材料:如圖(一),△ABC的周長為l,內切圓O的半徑為r,連接OA、OB、OC,△ABC被劃分為三個小三角形,用S△ABC表示△ABC的面積.

∵S△ABC=S△OAB+S△OBC+S△OCA
又∵S△OAB=AB•r,S△OBC=BC•r,S△OCA=CA•r
∴S△ABC=AB•r+BC•r+CA•r=l•r(可作為三角形內切圓半徑公式)
(1)理解與應用:利用公式計算邊長分為5、12、13的三角形內切圓半徑;
(2)類比與推理:若四邊形ABCD存在內切圓(與各邊都相切的圓,如圖(二))且面積為S,各邊長分別為a、b、c、d,試推導四邊形的內切圓半徑公式;
(3)拓展與延伸:若一個n邊形(n為不小于3的整數)存在內切圓,且面積為S,各邊長分別為a1、a2、a3、…、an,合理猜想其內切圓半徑公式(不需說明理由).

查看答案和解析>>

同步練習冊答案