若2是關(guān)于的方程的一個(gè)根,則c的值為

A.3B.2C.10D.4

B

解析試題分析:2是關(guān)于的方程的一個(gè)根,即是=2代入方程,等式還是成立,即可得到c=2
考點(diǎn):方程的根
點(diǎn)評(píng):此題難度不大,一個(gè)數(shù)或一個(gè)代數(shù)式是方程的根,那這個(gè)數(shù)或這個(gè)代數(shù)式可以直接代入方程中的未知數(shù)。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:閱讀理解

閱讀下列范例,按要求解答問(wèn)題.
例:已知實(shí)數(shù)a、b、c滿(mǎn)足a+b+2c=1,a2+b2+6c+
3
2
=0,求a、b、c的值.
解法1:由已知得a+b=1-2c,①(a+b)2-2ab+6c+
3
2
=0.②
將①代入②,整理得4c2+2c-2ab+
5
2
=0.∴ab=2c2+c+
5
4

由①、③可知,a、b是關(guān)于t的方程t2-(1-2c)t+2c2+c+
5
4
=0④的兩個(gè)實(shí)數(shù)根.
∴△=(1-2c)2-4(2c2+c+
5
4
≥0,即(c+1)2≤0.而(c+1)2≥0,∴c+l=0,c=-1,
將c=-1代入④,得t2-3t+
9
4
=0.∴t1=t2=
3
2
,即a=b=
3
2
.∴a=b,c=-1.
解法2∵a+b+2c=1,∴a+b=1-2c、設(shè)a=
1-2c
2
+t,b=
1-2c
2
-t.①
∵a2+b2+6c+
3
2
=0,∴(a+b)2-2ab+6c+
3
2
=0.②
將①代入②,得(1-2c)2-2(
1-2c
2
+t)(
1-2c
2
-t)
+6c+
3
2
=0.
整理,得t2+(c2+2c+1)=0,即t2+(c+1)2=0.∴t=0,c=-1.
將t、c的值同時(shí)代入①,得a=
3
2
,b=
3
2
.a(chǎn)=b=
3
2
,c=-1.
以上解法1是構(gòu)造一元二次方程解決問(wèn)題.若兩實(shí)數(shù)x、y滿(mǎn)足x+y=m,xy=n,則x、y是關(guān)于t的一元二次方程t2-mt+n=0的兩個(gè)實(shí)數(shù)根,然后利用判別式求解.
以上解法2是采用均值換元解決問(wèn)題.若實(shí)數(shù)x、y滿(mǎn)足x+y=m,則可設(shè)x=
m
2
+t,y=
m
2
-t.一些問(wèn)題根據(jù)條件,若合理運(yùn)用這種換元技巧,則能使問(wèn)題順利解決.
下面給出兩個(gè)問(wèn)題,解答其中任意一題:
(1)用另一種方法解答范例中的問(wèn)題.
(2)選用范例中的一種方法解答下列問(wèn)題:
已知實(shí)數(shù)a、b、c滿(mǎn)足a+b+c=6,a2+b2+c2=12,求證:a=b=c.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

已知關(guān)于x的方程(n-1)x2+mx+1=0①有兩個(gè)相等的實(shí)數(shù)根.
(1)用含n的代數(shù)式表示m2;
(2)求證:關(guān)于x的m2x2-2mx-m2-2n2+3=0方程②必有兩個(gè)不相等的實(shí)數(shù)根;
(3)若方程①的一根的相反數(shù)恰好是方程②的一個(gè)根,求代數(shù)式m2n+12n的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知關(guān)于的一元二次方程2--2=0.  ……①

(1)    若=-1是方程①的一個(gè)根,求的值和方程①的另一根;

(2)    對(duì)于任意實(shí)數(shù),判斷方程①的根的情況,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知關(guān)于的一元二次方程2--2=0.  ……①

(1)   若=-1是方程①的一個(gè)根,求的值和方程①的另一根;

(2)   對(duì)于任意實(shí)數(shù),判斷方程①的根的情況,并說(shuō)明理由.

       

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

若關(guān)于的方程的一根是0,則m=           。

查看答案和解析>>

同步練習(xí)冊(cè)答案