如圖,在平面直角坐標(biāo)系中,△ABC的頂點(diǎn)坐標(biāo)為A(-2,3),B(-3,2),C(-1,1),請按要求完成下列操作:
(1)求△ABC的面積;
(2)畫出將△ABC先向下平移3個單位長度,再向左平移1個單位長度得到的△A1B1C1;
(3)畫出△A′B′C′關(guān)于x軸對稱的△A2B2C2;并寫出A2B2C2的坐標(biāo).

解:(1)S△ABC=2×2-×1×1-×1×2-×1×2,
=4--1-1,
=;

(2)如圖所示,△A1B1C1即為所求作的三角形;

(3)如圖所示,△A2B2C2即為所求作的三角形,
A2、B2、C2的坐標(biāo)分別為A2(2,3),B2(3,2),C2(1,1).
分析:(1)利用△ABC所在矩形的面積減去四周三個直角三角形的面積,進(jìn)行計(jì)算即可得解;
(2)根據(jù)網(wǎng)格結(jié)構(gòu)找出點(diǎn)A、B、C平移后的對應(yīng)點(diǎn)的位置,然后順次連接即可;
(3)根據(jù)平面直角坐標(biāo)系找出點(diǎn)A′、B′、C′關(guān)于x軸的對應(yīng)點(diǎn)的位置,然后順次連接即可.
點(diǎn)評:本題考查了利用平移變換與軸對稱變換作圖,熟悉網(wǎng)格結(jié)構(gòu)找出對應(yīng)點(diǎn)的位置是解題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在平面直角坐標(biāo)中,四邊形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,點(diǎn)P為x軸上的一個動點(diǎn),但是點(diǎn)P不與點(diǎn)0、點(diǎn)A重合.連接CP,D點(diǎn)是線段AB上一點(diǎn),連接PD.
(1)求點(diǎn)B的坐標(biāo);
(2)當(dāng)∠CPD=∠OAB,且
BD
AB
=
5
8
,求這時點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•渝北區(qū)一模)如圖,在平面直角坐標(biāo)xoy中,以坐標(biāo)原點(diǎn)O為圓心,3為半徑畫圓,從此圓內(nèi)(包括邊界)的所有整數(shù)點(diǎn)(橫、縱坐標(biāo)均為整數(shù))中任意選取一個點(diǎn),其橫、縱坐標(biāo)之和為0的概率是
5
29
5
29

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)中,等腰梯形ABCD的下底在x軸上,且B點(diǎn)坐標(biāo)為(4,0),D點(diǎn)坐標(biāo)為(0,3),則AC長為
5
5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)xOy中,已知點(diǎn)A(-5,0),P是反比例函數(shù)y=
k
x
圖象上一點(diǎn),PA=OA,S△PAO=10,則反比例函數(shù)y=
k
x
的解析式為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)中,四邊形OABC是等腰梯形,CB∥OA,OC=AB=4,BC=6,∠COA=45°,動點(diǎn)P從點(diǎn)O出發(fā),在梯形OABC的邊上運(yùn)動,路徑為O→A→B→C,到達(dá)點(diǎn)C時停止.作直線CP.
(1)求梯形OABC的面積;
(2)當(dāng)直線CP把梯形OABC的面積分成相等的兩部分時,求直線CP的解析式;
(3)當(dāng)△OCP是等腰三角形時,請寫出點(diǎn)P的坐標(biāo)(不要求過程,只需寫出結(jié)果).

查看答案和解析>>

同步練習(xí)冊答案