【題目】定義一種對(duì)正整數(shù)nC運(yùn)算:①當(dāng)n為奇數(shù)時(shí),結(jié)果為3n+1;②當(dāng)n為偶數(shù)時(shí),結(jié)果為(其中k是使為奇數(shù)的正整數(shù))并且運(yùn)算重復(fù)進(jìn)行,例如,n66時(shí),其C運(yùn)算如下:

n26,則第2019C運(yùn)算的結(jié)果是_____

【答案】1

【解析】

根據(jù)題意,可以寫(xiě)出前幾次輸出的結(jié)果,從而可以發(fā)現(xiàn)結(jié)果的變化規(guī)律,從而可以得到第2019“C運(yùn)算的結(jié)果.

解:由題意可得,

當(dāng)n26時(shí),

第一次輸出的結(jié)果為:13

第二次輸出的結(jié)果為:40,

第三次輸出的結(jié)果為:5,

第四次輸出的結(jié)果為:16,

第五次輸出的結(jié)果為:1

第六次輸出的結(jié)果為:4,

第七次輸出的結(jié)果為:1

第八次輸出的結(jié)果為:4

…,

∵(20194)÷22015÷210071,

∴第2019次“C運(yùn)算”的結(jié)果是1,

故答案為:1

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線y=ax2+bx﹣經(jīng)過(guò)A(﹣1,0),B(5,0)兩點(diǎn).

(1)求此拋物線的解析式;

(2)在拋物線的對(duì)稱(chēng)軸上有一點(diǎn)P,使得PA+PC的值最小時(shí),求△ABP的面積;

(3)點(diǎn)Mx軸上一動(dòng)點(diǎn),在拋物線上是否存在一點(diǎn)N,使以A,C,M,N四點(diǎn)構(gòu)成的四邊形為平行四邊形?若存在,直接寫(xiě)出點(diǎn)N的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】以直線上一點(diǎn)為端點(diǎn)作射線,使,將一塊直角三角板的直角頂點(diǎn)放在處,一邊放在射線上,將直角三角板繞點(diǎn)逆時(shí)針?lè)较蛐D(zhuǎn)直至邊第一次重合在射線上停止.

1)如圖1,邊在射線上,則 ;

2)如圖2,若恰好平分,則 ;

3)如圖3,若,則 ;

4)在旋轉(zhuǎn)過(guò)程中,始終保持的數(shù)量關(guān)系是 ,并請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列命題:①全等三角形的對(duì)應(yīng)邊上的中線,高線,對(duì)應(yīng)角的平分線對(duì)應(yīng)相等;②兩邊和其中一邊上的中線(或第三邊上的中線)對(duì)應(yīng)相等的兩個(gè)三角形全等;③兩角和其中一角的角平分線(或第三角的角平分線)對(duì)應(yīng)相等的兩個(gè)三角形全等;④兩邊和其中一邊上的高線(或第三邊上的高線)對(duì)應(yīng)相等的兩個(gè)三角形全等.其中正確命題有________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】二次函數(shù)y=ax2+bx+c的圖象如圖,則一次函數(shù)y=bx+b2﹣4ac與反比例函數(shù)y=在同一坐標(biāo)系內(nèi)的圖象大致為( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】若拋物線L1:y=ax2+bx+c(a,b,c是常數(shù),abc≠0)與直線L2都經(jīng)過(guò)y軸上的一點(diǎn)P,且拋物線L1與頂點(diǎn)Q在直線L2上,則稱(chēng)此直線L2與該拋物線L1具有“一帶一路”關(guān)系,此時(shí),直線L2叫做拋物線L1的“帶線”,拋物線L1叫做直L2的“路線”.

(1) 若直線y=mx+1與拋物線y=x2-2x+n具有“一帶一路”關(guān)系,則m+n=_______.

(2) 若某“路線”L1的頂點(diǎn)在反比例函數(shù)的圖像上,它的“帶線” L2的解析式為y=2x-4,則此“路線”L的解析式為:_____________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,某人在山坡坡腳A處測(cè)得電視塔尖點(diǎn)C 的仰角為60°,沿山坡向上走到P處再測(cè)得C的仰角為45°,已知OA=200米,山坡坡度為(即tanPAB),且O、A、B在同一條直線上,求電視塔OC的高度以及此人所在位置點(diǎn)P的垂直高度.(測(cè)傾器的高度忽略不計(jì),結(jié)果保留根號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在桌面上,有若干個(gè)完全相同的小正方體堆成的一個(gè)幾何體,如圖所示.

(1)請(qǐng)畫(huà)出這個(gè)幾何體的三視圖.

(2)若將此幾何體的表面噴上紅漆(放在桌面上的一面不噴),則三個(gè)面上是紅色的小正方體有 個(gè).

(3)若現(xiàn)在你的手頭還有一些相同的小正方體可添放在幾何體,要保持主視圖和左視圖不變,則最多可以添加___個(gè)小正方體.

(4)若另一個(gè)幾何體與幾何體的主視圖和左視圖相同,而小正方體個(gè)數(shù)則比幾何體1個(gè),請(qǐng)?jiān)趫D2中畫(huà)出幾何體的俯視圖中的任意兩種.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】端午節(jié)放假期間,某學(xué)校計(jì)劃租用輛客車(chē)送名師生參加研學(xué)活動(dòng),現(xiàn)有甲、乙兩種客車(chē),它們的載客量和租金如下表,設(shè)租用甲種客車(chē)輛,租車(chē)總費(fèi)用為元.

甲種客車(chē)

乙種客車(chē)

載客量(人/輛)

租金(元/輛)

1)求出(元)與(輛)之間函數(shù)關(guān)系式;

2)求出自變量的取值范圍;

3)選擇怎樣的租車(chē)方案所需的費(fèi)用最低?最低費(fèi)用多少元?

查看答案和解析>>

同步練習(xí)冊(cè)答案