如圖,四邊形ABCD內(nèi)接于⊙O,BC為⊙O的直徑,E為DC邊上一點,若AE∥BC,AE=EC=7,AD=6.

(1)求AB的長;

(2)求EG的長.

 

    解:(1)∵AE∥BC,

∴∠EAC=∠ACB,

又∵AE=EC,

∴∠EAC=∠ECA,

∴∠ACB=∠ACE,

∴AB=AD=6.

(2)如圖:

延長BA,CD交于P,

∵AE∥BC,

∴∠EAC=∠ACB,

∵AE=EC,

∴∠EAC=∠ACE,

∴∠ACB=∠ACE,

又∵BC是直徑,

∴∠BAC=90°,

∴AB=AP,PE=EC.

∴△GAE∽△GCB,且AE:BC=1:2.

∴BC=14.

在△ABC中,AC===4

AG=AC=

BG===

EG=BG=

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,四邊形ABCD的對角線AC與BD互相垂直平分于點O,設(shè)AC=2a,BD=2b,請推導(dǎo)這個四邊形的性質(zhì).(至少3條)
(提示:平面圖形的性質(zhì)通常從它的邊、內(nèi)角、對角線、周長、面積等入手.)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,四邊形ABCD的對角線AC、BD交于點P,過點P作直線交AD于點E,交BC于點F.若PE=PF,且AP+AE=CP+CF.
(1)求證:PA=PC.
(2)若BD=12,AB=15,∠DBA=45°,求四邊形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,四邊形ABCD,AB=AD=2,BC=3,CD=1,∠A=90°,求∠ADC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,四邊形ABCD為正方形,E是BC的延長線上的一點,且AC=CE,求∠DAE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,四邊形ABCD是正方形,點E是BC的中點,∠AEF=90°,EF交正方形外角的平分線CF于F.

(I)求證:AE=EF;
(Ⅱ)若將條件中的“點E是BC的中點”改為“E是BC上任意一點”,其余條件不變,則結(jié)論AE=EF還成立嗎?若成立,請證明;若不成立,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案