【題目】如圖,在中,,以斜邊上的中線為直徑作,分別與、交于點(diǎn)、.
(1)過點(diǎn)作,垂足為,求證:為的切線;
(2)連接,求證:.
【答案】(1)證明見解析;(2)證明見解析
【解析】
(1)連接ON,如圖,根據(jù)斜邊上的中線等于斜邊的一半得到CD=AD=DB,則∠1=∠B,再證明∠2=∠B得到ON∥DB,接著根據(jù)平行線的性質(zhì)得到ON⊥NE,然后利用切線的判定即可得到結(jié)論;
(2)連接DN,如圖,根據(jù)圓周角定理得到∠CMD=∠CND=90°,則可判斷四邊形CMDN為矩形,所以DM=CN,然后證明CN=BN,從而得到MD=NB.
1)連接ON,如圖,
∵CD為斜邊AB上的中線,
∴CD=AD=DB,
∴∠1=∠B.
∵OC=ON,
∴∠1=∠2,
∴∠2=∠B,
∴ON∥DB.
∵NE⊥AB,
∴ON⊥NE,
∴NE為切線;
(2)連接DN,如圖,
∵CD為直徑,
∴∠CMD=∠CND=90°,
而∠MCB=90°,
∴四邊形CMDN為矩形,
∴DM=CN.
∵DN⊥BC,CD=BD,
∴CN=BN,
∴MD=NB.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)問題發(fā)現(xiàn)
如圖1,在中,,點(diǎn)為的中點(diǎn),以為一邊作正方形,點(diǎn)恰好與點(diǎn)重合,則線段與的數(shù)量關(guān)系為______________;
(2)拓展探究
在(1)的條件下,如果正方形繞點(diǎn)旋轉(zhuǎn),連接,線段與的數(shù)量關(guān)系有無變化?請僅就圖2的情形進(jìn)行說明;
(3)問題解決.
當(dāng)正方形旋轉(zhuǎn)到三點(diǎn)共線時(shí),直接寫出線段的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線與軸交于點(diǎn),對稱軸為,則下列結(jié)論中正確的是( )
A.
B. 當(dāng)時(shí),隨的增大而增大
C.
D. 是一元二次方程的一個根
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖中,,P是斜邊AC上一個動點(diǎn),以即為直徑作交BC于點(diǎn)D,與AC的另一個交點(diǎn)E,連接DE.
(1)當(dāng)時(shí),
①若,求的度數(shù);
②求證;
(2)當(dāng),時(shí),
①是含存在點(diǎn)P,使得是等腰三角形,若存在求出所有符合條件的CP的長;
②以D為端點(diǎn)過P作射線DH,作點(diǎn)O關(guān)于DE的對稱點(diǎn)Q恰好落在內(nèi),則CP的取值范圍為________.(直接寫出結(jié)果)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正比例函數(shù)的圖象與反比例函數(shù)的圖象交于、兩點(diǎn).是第一象限內(nèi)反比例函數(shù)圖象上一點(diǎn),過點(diǎn)作軸的平行線,交直線于點(diǎn),連接,若的面積為,則點(diǎn)的坐標(biāo)為_____________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y=﹣x+4的圖象與反比例函數(shù)y=(k為常數(shù),且k≠0)的圖象交于A(1,a),B(3,b)兩點(diǎn).
(1)求反比例函數(shù)的表達(dá)式
(2)在x軸上找一點(diǎn)P,使PA+PB的值最小,求滿足條件的點(diǎn)P的坐標(biāo)
(3)求△PAB的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某小型水庫欄水壩的橫斷面是四邊形ABCD,DC∥AB,測得迎水坡的坡角α=30°,已知背水坡的坡比為1.2:1,壩頂部DC寬為2m,壩高為6m,則壩底AB的長為_____m.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】圖1是某小區(qū)入口實(shí)景圖,圖2是該入口抽象成的平面示意圖.已知入口BC寬3.9米,門衛(wèi)室外墻AB上的O點(diǎn)處裝有一盞路燈,點(diǎn)O與地面BC的距離為3.3米,燈臂OM長為1.2米(燈罩長度忽略不計(jì)),∠AOM=60°.
(1)求點(diǎn)M到地面的距離;
(2)某搬家公司一輛總寬2.55米,總高3.5米的貨車從該入口進(jìn)入時(shí),貨車需與護(hù)欄CD保持0.65米的安全距離,此時(shí),貨車能否安全通過?若能,請通過計(jì)算說明;若不能,請說明理由.(參考數(shù)據(jù):1.73,結(jié)果精確到0.01米)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,是矩形內(nèi)的任意一點(diǎn),連接、、、, 得到 , , , ,設(shè)它們的面積分別是,,,, 給出如下結(jié)論:①②③若,則④若,則點(diǎn)在矩形的對角線上.其中正確的結(jié)論的序號是( )
A.①②B.②③C.③④D.②④
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com