【題目】如圖,A是∠MON邊OM上一點(diǎn),AE∥ON.
(1)在圖中作∠MON的角平分線OB,交AE于點(diǎn)B;(要求:尺規(guī)作圖,保留作圖痕跡,不寫作法和證明)
(2)在(1)中,過點(diǎn)A畫OB的垂線,垂足為點(diǎn)D,交ON于點(diǎn)C,連接CB,將圖形補(bǔ)充完整,并證明四邊形OABC是菱形.

【答案】
(1)解:如圖所示:


(2)證明:∵OB平分∠MON,

∴∠AOB=∠BOC.

∵AE∥ON,

∴∠ABO=∠BOC.

∴∠AOB=∠ABO,AO=AB.

∵AD⊥OB,

∴BD=OD.

在△ADB和△CDO中

∴△ADB≌△CDO,AB=OC.

∵AB∥OC,

∴四邊形OABC是平行四邊形.

∵AO=AB,

∴四邊形OABC是菱形.


【解析】(1)角平分線的作法:用圓規(guī)以頂點(diǎn)為圓心,任意長(zhǎng)為半徑畫一個(gè)。ㄒWC有兩個(gè)交點(diǎn),不要太。僖詣偛女嫵龅慕稽c(diǎn)為頂點(diǎn),以大于第一次的半徑為半徑畫。ㄗ笥腋鳟嬕粋(gè)。,再取兩道弧的交點(diǎn),并連接這個(gè)交點(diǎn)的一開始最上面的頂點(diǎn),這就是角平分線.(2)本題可根據(jù)“一組鄰邊相等的平行四邊形是菱形”,先證明OABC是個(gè)平行四邊形,然后證明OA=AB即可.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了能以“更新、更綠、更潔、更寧”的城市形象迎接2011年大運(yùn)會(huì)的召開,深圳市全面實(shí)施市容市貌環(huán)境提升行動(dòng),某工程隊(duì)承擔(dān)了一段長(zhǎng)1500米的道路綠化工程,施工時(shí)有兩種綠化方案:
甲方案是綠化1米的道路需要A型花2枝和B型花3枝,成本是22元;
乙方案是綠化1米的道路需要A型花1枝和B型花5枝,成本是25元.
現(xiàn)要求按照乙方案綠化道路的總長(zhǎng)度不能少于按甲方案綠化道路的總長(zhǎng)度的2倍.
(1)求A型花和B型花每枝的成本分別是多少元?
(2)求當(dāng)按甲方案綠化的道路總長(zhǎng)度為多少米時(shí),所需工程的總成本最少?總成本最少是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AB=4,將△ABC繞點(diǎn)B按逆時(shí)針方向旋轉(zhuǎn)30°后得到△A1BC1 , 則陰影部分的面積為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,A為某旅游景區(qū)的最佳觀景點(diǎn),游客可從B處乘坐纜車先到達(dá)小觀景平臺(tái)DE觀景,然后再由E處繼續(xù)乘坐纜車到達(dá)A處,返程時(shí)從A處乘坐升降電梯直接到達(dá)C處,已知:AC⊥BC于C,DE∥BC,BC=110米,DE=9米,BD=60米,α=32°,β=68°,求AC的高度.(參考數(shù)據(jù):sin32°≈0.53;cos32°≈0.85;tan32°≈0.62;sin68°≈0.93;cos68°≈0.37;tan68°≈2.48)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知A1 , A2 , A3 , …,An是x軸上的點(diǎn),且OA1=A1A2=A2A3=…=AnAn+1=1,分別過點(diǎn)A1 , A2 , A3 , …,An+1作x軸的垂線交一次函數(shù) 的圖象于點(diǎn)B1 , B2 , B3 , …,Bn+1 , 連接A1B2 , B1A2 , A2B3 , B2A3 , …,AnBn+1 , BnAn+1依次產(chǎn)生交點(diǎn)P1 , P2 , P3 , …,Pn , 則Pn的坐標(biāo)是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知點(diǎn)A(﹣8,0),B(2,0),點(diǎn)C在直線y=﹣ 上,則使△ABC是直角三角形的點(diǎn)C的個(gè)數(shù)為(
A.1
B.2
C.3
D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,以△ABC的BC邊上一點(diǎn)O為圓心,經(jīng)過A,C兩點(diǎn)且與BC邊交于點(diǎn)E,點(diǎn)D為CE的下半圓弧的中點(diǎn),連接AD交線段EO于點(diǎn)F,若AB=BF.
(1)求證:AB是⊙O的切線;
(2)若CF=4,DF= ,求⊙O的半徑r及sinB.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某人的錢包內(nèi)有10元錢、20元錢和50元錢的紙幣各1張,從中隨機(jī)取出2張紙幣.
(1)求取出紙幣的總額是30元的概率;
(2)求取出紙幣的總額可購買一件51元的商品的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為進(jìn)一步緩解城市交通壓力,義烏市政府推出公共自行車,公共自行車在任何一個(gè)網(wǎng)店都能實(shí)現(xiàn)通租通還,某校學(xué)生小明統(tǒng)計(jì)了周六校門口停車網(wǎng)點(diǎn)各時(shí)段的借、還自行車數(shù),以及停車點(diǎn)整點(diǎn)時(shí)刻的自行車總數(shù)(稱為存量)情況,表格中x=1時(shí)的y的值表示8:00點(diǎn)時(shí)的存量,x=2時(shí)的y值表示9:00點(diǎn)時(shí)的存量…以此類推,他發(fā)現(xiàn)存量y(輛)與x(x為整數(shù))滿足如圖所示的一個(gè)二次函數(shù)關(guān)系.

時(shí)段

x

還車數(shù)

借車數(shù)

存量y

7:00﹣8:00

1

7

5

15

8:00﹣9:00

2

8

7

n

根據(jù)所給圖表信息,解決下列問題:
(1)m= , 解釋m的實(shí)際意義:;
(2)求整點(diǎn)時(shí)刻的自行車存量y與x之間滿足的二次函數(shù)關(guān)系式;
(3)已知10:00﹣11:00這個(gè)時(shí)段的借車數(shù)比還車數(shù)的一半還要多2,求此時(shí)段的借車數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案