知識背景:恩施來鳳有一處野生古楊梅群落,其野生楊梅是一種具特殊價值的綠色食品.在當(dāng)?shù)厥袌龀鍪蹠r,基地要求“楊梅”用雙層上蓋的長方體紙箱封裝(上蓋紙板面積剛好等于底面面積的2倍,如圖)

實際運用:如果要求紙箱的高為0.5米,底面是黃金矩形(寬與長的比是黃金比,取黃金比為0.6),體積為0.3立方米.

①按方案1(如圖)做一個紙箱,需要矩形硬紙板的面積是多少平方米?

②小明認(rèn)為,如果從節(jié)省材料的角度考慮,采用方案2(如圖)的菱形硬紙板做一個紙箱比方案1更優(yōu),你認(rèn)為呢?請說明理由.

 

【答案】

解:設(shè)紙箱底面長為x,則寬為0.6x;

由題意:,得                                

①由題意:矩形硬紙板的面積是3×2.2=6.6平方米;    

②連接A2C2、B2D2,

由△D2EF和△D2MQ相似,可求出D2到EF的距離為0.4;

同理可求A2到MN的距離為;   

 所以A2C2=,B2D2=3;

菱形硬紙板的面積是5.625平方米;                   

所以方案2更優(yōu);

【解析】①利用寬與長的比是黃金比,取黃金比為0.6,假設(shè)底面長為x,寬就為0.6x,再利用圖形得出QM= +0.5+1+0.5+ =3,F(xiàn)H=0.3+0.5+0.6+0.5+0.3=2.2,進(jìn)而求出即可;

②根據(jù)菱形的性質(zhì)得出,對角線乘積的一半絕對小于矩形邊長乘積即可得出答案;

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

知識背景:恩施來鳳有一處野生古楊梅群落,其野生楊梅是一種具特殊價值的綠色食品.在當(dāng)?shù)厥袌龀鍪蹠r,基地要求“楊梅”用雙層上蓋的長方體紙箱封裝(上蓋紙板面積剛好等于底面面積的2倍,如圖)
(1)實際運用:如果要求紙箱的高為0.5米,底面是黃金矩形(寬與長的比是黃金比,取黃金比為0.6),體積為0.3立方米.
①按方案1(如圖)做一個紙箱,需要矩形硬紙板A1B1C1D1的面積是多少平方米?
精英家教網(wǎng)
②小明認(rèn)為,如果從節(jié)省材料的角度考慮,采用方案2(如圖)的菱形硬紙板A2B2C2D2做一個紙箱比方案1更優(yōu),你認(rèn)為呢?請說明理由.
精英家教網(wǎng)
(2)拓展思維:北方一家水果商打算在基地購進(jìn)一批“野生楊梅”,但他感覺(1)中的紙箱體積太大,搬運吃力,要求將紙箱的底面周長、底面面積和高都設(shè)計為原來的一半,你認(rèn)為水果商的要求能辦到嗎?請利用函數(shù)圖象驗證.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

知識背景:恩施來鳳有一處野生古楊梅群落,其野生楊梅是一種具特殊價值的綠色食品.在當(dāng)?shù)厥袌龀鍪蹠r,基地要求“楊梅”用雙層上蓋的長方體紙箱封裝(上蓋紙板面積剛好等于底面面積的2倍,如圖)
實際運用:如果要求紙箱的高為0.5米,底面是黃金矩形(寬與長的比是黃金比,取黃金比為0.6),體積為0.3立方米.
①按方案1(如圖)做一個紙箱,需要矩形硬紙板A1B1C1D1的面積是多少平方米?
②小明認(rèn)為,如果從節(jié)省材料的角度考慮,采用方案2(如圖)的菱形硬紙板A2B2C2D2做一個紙箱比方案1更優(yōu),你認(rèn)為呢?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

知識背景:恩施來鳳有一處野生古楊梅群落,其野生楊梅是一種具特殊價值的綠色食品.在當(dāng)?shù)厥袌龀鍪蹠r,基地要求“楊梅”用雙層上蓋的長方體紙箱封裝(上蓋紙板面積剛好等于底面面積的2倍,如圖)
實際運用:如果要求紙箱的高為0.5米,底面是黃金矩形(寬與長的比是黃金比,取黃金比為0.6),體積為0.3立方米.
①按方案1(如圖)做一個紙箱,需要矩形硬紙板的面積是多少平方米?
②小明認(rèn)為,如果從節(jié)省材料的角度考慮,采用方案2(如圖)的菱形硬紙板做一個紙箱比方案1更優(yōu),你認(rèn)為呢?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012屆江蘇省江陰市南菁中學(xué)九年級5月中考適應(yīng)性訓(xùn)練(二模)數(shù)學(xué)試卷(帶解析) 題型:解答題

知識背景:恩施來鳳有一處野生古楊梅群落,其野生楊梅是一種具特殊價值的綠色食品.在當(dāng)?shù)厥袌龀鍪蹠r,基地要求“楊梅”用雙層上蓋的長方體紙箱封裝(上蓋紙板面積剛好等于底面面積的2倍,如圖)
實際運用:如果要求紙箱的高為0.5米,底面是黃金矩形(寬與長的比是黃金比,取黃金比為0.6),體積為0.3立方米.
①按方案1(如圖)做一個紙箱,需要矩形硬紙板的面積是多少平方米?
②小明認(rèn)為,如果從節(jié)省材料的角度考慮,采用方案2(如圖)的菱形硬紙板做一個紙箱比方案1更優(yōu),你認(rèn)為呢?請說明理由.

查看答案和解析>>

同步練習(xí)冊答案