(2012•舟山)如圖,AB是⊙0的弦,BC與⊙0相切于點(diǎn)B,連接OA、OB.若∠ABC=70°,則∠A等于(  )
分析:由BC與⊙0相切于點(diǎn)B,根據(jù)切線的性質(zhì),即可求得∠OBC=90°,又由∠ABC=70°,即可求得∠OBA的度數(shù),然后由OA=OB,利用等邊對(duì)等角的知識(shí),即可求得∠A的度數(shù).
解答:解:∵BC與⊙0相切于點(diǎn)B,
∴OB⊥BC,
∴∠OBC=90°,
∵∠ABC=70°,
∴∠OBA=∠OBC-∠ABC=90°-70°=20°,
∵OA=OB,
∴∠A=∠OBA=20°.
故選B.
點(diǎn)評(píng):此題考查了切線的性質(zhì)與等腰三角形的性質(zhì).此題比較簡單,注意數(shù)形結(jié)合思想的應(yīng)用,注意圓的切線垂直于經(jīng)過切點(diǎn)的半徑定理的應(yīng)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2012•舟山)如圖,A、B兩點(diǎn)在河的兩岸,要測(cè)量這兩點(diǎn)之間的距離,測(cè)量者在與A同側(cè)的河岸邊選定一點(diǎn)C,測(cè)出AC=a米,∠A=90°,∠C=40°,則AB等于(  )米.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•舟山)如圖,已知菱形ABCD的對(duì)角線相交于點(diǎn)O,延長AB至點(diǎn)E,使BE=AB,連接CE.
(1)求證:BD=EC;
(2)若∠E=50°,求∠BAO的大。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•舟山)如圖,已知△ABC中,∠CAB=∠B=30°,AB=2
3
,點(diǎn)D在BC邊上,把△ABC沿AD翻折使AB與AC重合,得△AB′D,則△ABC與△AB′D重疊部分的面積為(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•舟山)如圖,已知⊙O的半徑為2,弦AB⊥半徑OC,沿AB將弓形ACB翻折,使點(diǎn)C與圓心O重合,則月牙形(圖中實(shí)線圍成的部分)的面積是
4
3
π+2
3
4
3
π+2
3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•舟山)如圖,在Rt△ABC中,AB=BC,∠ABC=90°,點(diǎn)D是AB的中點(diǎn),連接CD,過點(diǎn)B作BG⊥CD,分別交CD,CA于點(diǎn)E,F(xiàn),與過點(diǎn)A且垂直于AB的直線相交于點(diǎn)G,連接DF,給出以下五個(gè)結(jié)論:
AG
AB
=
FG
FB
;②∠ADF=∠CDB;③點(diǎn)F是GE的中點(diǎn);④AF=
2
3
AB;⑤S△ABC=5S△BDF,
其中正確結(jié)論的序號(hào)是
①②④
①②④

查看答案和解析>>

同步練習(xí)冊(cè)答案