如圖所示,在直角梯形OABC,CB,OA,∠OAB=90°,點(diǎn)O為坐標(biāo)原點(diǎn),點(diǎn)A在x半精英家教網(wǎng)軸上,對(duì)角線OB,AC相交于點(diǎn)M,OA=AB=4,OA=2CB.
(1)線段OB的長(zhǎng)為
 
,點(diǎn)C的坐標(biāo)為
 
;
(2)求△OCM的面積;
(3)求過O,A,C三點(diǎn)的拋物線的解析式;
(4)若點(diǎn)E在(3)的拋物線的對(duì)稱軸上,點(diǎn)F為該拋物線上的點(diǎn),且以A,O,F(xiàn),E四點(diǎn)為頂點(diǎn)的四邊形為平行四邊形,求點(diǎn)F的坐標(biāo).
分析:(1)易證得△OAB是等腰Rt△,已知了直角邊的長(zhǎng),即可根據(jù)直角三角形的性質(zhì)求出斜邊OB的長(zhǎng);已知了OA=2BC,即可得到C點(diǎn)的橫坐標(biāo),而B、C的縱坐標(biāo)相同,由此可求出C點(diǎn)的坐標(biāo);
(2)易證得△BCM∽△OAM,且OA=2BC,根據(jù)相似三角形的對(duì)應(yīng)邊成比例可得AM=2CM;由此可證得△OAM的面積是△OCM的2倍,即△OCM的面積是△OAC的
1
3
,因此只需求出△OAC的面積即可;
(3)用待定系數(shù)法即可求出經(jīng)過O、A、C三點(diǎn)的函數(shù)解析式;
(4)根據(jù)(3)得到的拋物線的解析式,即可求出其對(duì)稱軸方程;若以A,O,F(xiàn),E四點(diǎn)為頂點(diǎn)的四邊形為平行四邊形,應(yīng)分成兩種情況考慮:
①E點(diǎn)在x軸的下方,F(xiàn)在x軸的上方;此時(shí)四邊形OFAE的對(duì)角線OA、EF互相平分,四邊形OFAE是平行四邊形,此時(shí)F與C點(diǎn)重合;
②E、F同時(shí)在x軸下方;此時(shí)四邊形OAFE(或OAEF)以O(shè)A為邊,根據(jù)平行四邊形的對(duì)邊互相平行且相等知:OA=EF,由此可求出F點(diǎn)的橫坐標(biāo),將其代入拋物線的解析式中,即可求得F點(diǎn)的坐標(biāo).
解答:解:(1)在Rt△OAB中,OA=AB=4,所以△AOB是等腰直角三角形,
∴OB=
OA2+AB2
=
42+42
=4
2
,B(4,4);
∵OA=2BC,則C點(diǎn)位于OA的垂直平分線上,
∴C(2,4);

(2)在直角梯形OABC中,OA=AB=4,∠OAB=90°,
∵CB∥OA,
∴△OAM∽△BCM,(3分)
又∵OA=2BC,
∴AM=2CM,CM=
1
3
AC,(4分)
所以S△OCM=
1
3
S△OAC=
1
3
×
1
2
×4×4=
8
3
.(5分)
(注:另有其它解法同樣可得結(jié)果,正確得本小題滿分.)

(3)設(shè)拋物線的解析式為y=ax2+bx+c(a≠0),
由拋物線的圖象經(jīng)過點(diǎn)O(0,0),A(4,0),C(2,4),
所以
c=0
16a+4b+c=0
4a+2b+c=4
,(6分)
解這個(gè)方程組得a=-1,b=4,c=0,(7分)
所以拋物線的解析式為:
y=-x2+4x;(8分)

精英家教網(wǎng)(4)∵拋物線y=-x2+4x的對(duì)稱軸是CD,x=2,
①當(dāng)點(diǎn)E在x軸的上方時(shí),CE和OA互相平分則可知四邊形OEAC為平行四邊形,此時(shí)點(diǎn)F和點(diǎn)C重合,
點(diǎn)F的坐標(biāo)即為點(diǎn)F(2,4);(9分)
②當(dāng)點(diǎn)E在x軸的下方,點(diǎn)F在對(duì)稱軸x=2的右側(cè),存在平行四邊形AOEF,OA∥EF,且OA=EF,
此時(shí)點(diǎn)F的橫坐標(biāo)為6,
將x=6代入y=-x2+4x,可得y=-12.
所以F(6,-12). (11分)
同理,點(diǎn)F在對(duì)稱軸x=2的左側(cè),存在平行四邊形OAEF,OA∥FE,且OA=FE,
此時(shí)點(diǎn)F的橫坐標(biāo)為-2,
將x=-2代入y=-x2+4x,可得y=-12,
所以F(-2,-12). (12分)
綜上所述,點(diǎn)F的坐標(biāo)為(2,4),(6,-12),(-2,-12).(12分)
點(diǎn)評(píng):此題主要考查了解直角三角形、三角形面積的求法、二次函數(shù)解析式的確定以及平行四邊形的判定等知識(shí),同時(shí)還考查了分類討論的數(shù)學(xué)思想,綜合性強(qiáng),難度偏大.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

27、如圖所示,在直角梯形ABCD中,AD∥BC,AD=24cm,AB=8cm,BC=26cm,動(dòng)點(diǎn)P從A點(diǎn)開始沿AD邊向D以1cm/s的速度運(yùn)動(dòng),動(dòng)點(diǎn)Q從C點(diǎn)開始沿CB邊向B以3cm/s的速度運(yùn)動(dòng).P,Q分別從A,C同時(shí)出發(fā),當(dāng)其中一點(diǎn)到端點(diǎn)時(shí),另一點(diǎn)也隨之停止運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t(s),t分別為何值時(shí),四邊形PQCD是平行四邊形?等腰梯形?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖所示,在直角梯形ABCD中,AB∥CD,∠B=∠C=90°,AD=20,BC=10,則∠A和∠D分別是( 。
A、30°,150°B、45°,135°C、120°,60°D、150°,30°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖所示,在直角梯形ABCD中,∠A=∠D=90°,截取AE=BF=DG=x.已知AB=6,CD=3,AD=4.求四邊形CGEF的面積S關(guān)于x的函數(shù)表達(dá)式和x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖所示,在直角梯形ABCD中,AB=2,P是邊AB的中點(diǎn),∠PDC=90°,問梯形ABCD面積的最小值是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•山西模擬)如圖所示,在直角梯形ABCD中,AB∥CD,點(diǎn)E為AB的中點(diǎn),點(diǎn)F為BC的中點(diǎn),AB=4,EF=2,∠B=60°,則AD的長(zhǎng)為
2
3
2
3

查看答案和解析>>

同步練習(xí)冊(cè)答案