【題目】如圖,在邊長為1的小正方形組成的網格中,△ABC和△DEF的頂點都在格點上,P1,P2,P3,P4,P5是△DEF邊上的5個格點,請按要求完成下列各題:
(1)試證明三角形△ABC為直角三角形;
(2)判斷△ABC和△DEF是否相似,并說明理由;
(3)畫一個三角形,使它的三個頂點為P1,P2,P3,P4,P5中的3個格點并且與△ABC相似(要求:不寫作法與證明).
【答案】(1)證明見解析;(2)相似,(3)作圖見解析.
【解析】
試題(1)利用網格得出AB2=20,AC2=5,BC2=25,再利用勾股定理逆定理得出答案即可;
(2)利用AB=2,AC=,BC=5以及DE=4,DF=2,EF=2,利用三角形三邊比值關系得出即可;
(3)根據△P2P4P5三邊與△ABC三邊長度得出答案即可.
解:(1)∵AB2=20,AC2=5,BC2=25;
∴AB2+AC2=BC2,
根據勾股定理的逆定理得△ABC 為直角三角形;
(2)△ABC和△DEF相似.
由(1)中數據得AB=2,AC=,BC=5,
DE=4,DF=2,EF=2.
====,
∴△ABC∽△DEF.
(3)如圖:連接P2P5,P2P4,P4P5,
∵P2P5=,P2P4=,P4P5=2,
AB=2,AC=,BC=5,
∴===,
∴△ABC∽△P2P4P5.
科目:初中數學 來源: 題型:
【題目】如圖,在⊙O中,AB是直徑,點C是圓上一點,點D是弧BC中點,過點D作⊙O切線DF,連接AC并延長交DF于點E.
(1)求證:AE⊥EF;
(2)若圓的半徑為5,BD=6 求AE的長度.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,正方形中,,以為圓心,長為半徑畫,點在上移動,連接,并將繞點逆時針旋轉至,連接.在點移動的過程中,長度的最小值是( )
A.B.C.D.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在平面直角坐標系中,拋物線的最高點的縱坐標是2.
(1)求拋物線的表達式;
(2)將拋物線在之間的部分記為圖象,將圖象沿直線x=1翻折,翻折后圖象記為,圖象和組成G,直線:和圖象G在x軸上方的部分有兩個公共點,求k的取值范圍;
(3)直線:與圖象G在x軸上方的部分分別交于A、M、P、Q四點,若AM=2PQ,求的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】據《北京晚報》介紹,自2009年故宮博物院年度接待觀眾首次突破1000萬人次之后,每年接待量持續(xù)增長,到2018年突破1700萬人次,成為世界上接待量最多的博物館.特別是隨著《我在故宮修文物》、《上新了,故宮》等一批電視文博節(jié)目的播出,社會上再次掀起故宮熱.于是故宮文創(chuàng)營銷人員為開發(fā)針對不同年齡群體的文創(chuàng)產品,隨機調查了部分參觀故宮的觀眾的年齡,整理并繪制了如下統(tǒng)計圖表.
2018年參觀故宮觀眾年齡頻數分布表
年齡x/歲 | 頻數/人數 | 頻率 |
20≤x<30 | 80 | b |
30≤x<40 | a | 0.240 |
40≤x<50 | 35 | 0.175 |
50≤x<60 | 37 | c |
合計 | 200 | 1.000 |
(1)求表中a,b,c的值;
(2)補全頻數分布直方圖;
(3)從數據上看,年輕觀眾(20≤x<40)已經成為參觀故宮的主要群體.如果今年參觀故宮人數達到2000萬人次,那么其中年輕觀眾預計約有 萬人次.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,AB是⊙O的直徑,弦CD⊥AB于點E,點G在直徑DF的延長線上,∠D=∠G=30°.
(1)判斷CG與圓O的關系,并說明理由;
(2)若CD=6,求線段GF的長度.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,為了拆除震后危樓,抗震減災工作組對所剩部分危樓樓房進行摸排測量.在危樓樓角B點處,測得危樓樓頂A的仰角為60°;沿樓角B點的正前方前進8米到達點C,在離C點2米高的D處測得危樓樓頂A的仰角為30°.請根據以上測量數據,求出樓頂A離地面的高度.(≈1.7,精確到1米)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在坡頂處的同一水平面上有一座古塔,數學興趣小組的同學在斜坡底處測得該塔的塔頂的仰角為,然后他們沿著坡度為的斜坡攀行了米,在坡頂處又測得該塔的塔頂的仰角為.求古塔的高度.(結果精確到米,參考數據: , , )
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在正方形網格中,△OBC的頂點分別為O(0,0),B(3,﹣1)、C(2,1).
(1)以點O(0,0)為位似中心,按比例尺2:1在位似中心的異側將△OBC放大為△OB′C′,放大后點B、C兩點的對應點分別為B′、C′,畫出△OB′C′,并寫出點B′、C′的坐標:B′( , ),C′( , );
(2)在(1)中,若點M(x,y)為線段BC上任一點,寫出變化后點M的對應點M′的坐標( , ).
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com