四邊形一條對(duì)角線所在直線上的點(diǎn),如果到這條對(duì)角線的兩端點(diǎn)的距離不相等,但到另一對(duì)角線的兩個(gè)端點(diǎn)的距離相等,則稱(chēng)這點(diǎn)為這個(gè)四邊形的準(zhǔn)等距點(diǎn).如圖,點(diǎn)P為四邊形ABCD對(duì)角線AC所在直線上的一點(diǎn),PD=PB,PA≠PC,則點(diǎn)P為四邊形ABCD的準(zhǔn)等距點(diǎn).
(1)如圖2,畫(huà)出菱形ABCD的一個(gè)準(zhǔn)等距點(diǎn).
(2)如圖3,作出四邊形ABCD的一個(gè)準(zhǔn)等距點(diǎn)(尺規(guī)作圖,保留作圖痕跡,不要求寫(xiě)作法).
(3)如圖4,在四邊形ABCD中,P是AC上的點(diǎn),PA≠PC,延長(zhǎng)BP交CD于點(diǎn)E,延長(zhǎng)DP交BC于點(diǎn)F,且∠CDF=∠CBE,CE=CF.求證:點(diǎn)P是四邊形ABCD的準(zhǔn)等距點(diǎn).
(1)如圖2,點(diǎn)P即為所畫(huà)點(diǎn).…(1分)(答案不唯一)
(2)如圖3,點(diǎn)P即為所作點(diǎn).…(2分)(答案不唯一.)


(3)證明:連接DB,
在△DCF與△BCE中,
∠DCF=∠BCE
∠CDF=∠CBE
CF=CE
,
∴△DCF≌△BCE(AAS),
∴CD=CB,
∴∠CDB=∠CBD.
∴∠PDB=∠PBD,
∴PD=PB,
∵PA≠PC
∴點(diǎn)P是四邊形ABCD的準(zhǔn)等距點(diǎn).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

數(shù)學(xué)課上,探討角平分線的作法時(shí),李老師用直尺和圓規(guī)作角平分線,方法如下:小穎的身邊只有刻度尺,經(jīng)過(guò)嘗試,她發(fā)現(xiàn)利用刻度尺也可以作角平分線.
根據(jù)以上情境,解決下列問(wèn)題:
①李老師用尺規(guī)作角平分線時(shí),用到的三角形全等的判定方法是______.
②小聰?shù)淖鞣ㄕ_嗎?請(qǐng)說(shuō)明理由.
③請(qǐng)你幫小穎設(shè)計(jì)用刻度尺畫(huà)角平分線的方法.(要求:畫(huà)出圖形,寫(xiě)出畫(huà)圖步驟,不予證明)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在直角三角形中,一直角邊比另一直角邊長(zhǎng)1,且斜邊長(zhǎng)為5.
(1)請(qǐng)畫(huà)出這個(gè)直角三角形的內(nèi)切圓;
(2)并求出此內(nèi)切圓的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

按要求畫(huà)出圖形并計(jì)算:
(1)畫(huà)一條線段AB=2厘米;
(2)延長(zhǎng)線段AB到點(diǎn)C,使BC=1厘米;
(3)取AC的中點(diǎn)D,計(jì)算DB的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

某學(xué)校的平面示意圖如圖所示,如果實(shí)驗(yàn)樓所在位置的坐標(biāo)為(4,-2),教學(xué)樓所在位置的坐標(biāo)為(1,3),那么語(yǔ)音室所在位置的坐標(biāo)為_(kāi)_____.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

某鄉(xiāng)鎮(zhèn)要修建一處公共服務(wù)設(shè)施,使它到三個(gè)村莊A、B、C的距離相等.
(1)若三個(gè)村莊A、B、C的位置如圖所示,請(qǐng)你在圖中準(zhǔn)確確定出公共設(shè)施(用點(diǎn)O表示)的位置;(要求:有作圖痕跡,不寫(xiě)作法)
(2)連接AC、BC、AO、BO后,若∠ACB=65°,則∠AOB的度數(shù)為_(kāi)_____.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(2五五3•河南)已知:如圖,點(diǎn)P、A分別是直線1上和直線1外的點(diǎn).求作:⊙O,使⊙O切直線1于點(diǎn)P,且經(jīng)過(guò)點(diǎn)A(保留作圖痕跡,寫(xiě)出作法)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

正方形網(wǎng)格中,小格的頂點(diǎn)叫做格點(diǎn).小華按下列要求作圖:①在正方形網(wǎng)格的三條不同的實(shí)線上各取一個(gè)格點(diǎn),使其中任意兩點(diǎn)不在同一條實(shí)線上;②連接三個(gè)格點(diǎn),使之構(gòu)成直角三角形.小華在左邊的正方形網(wǎng)格中作出了Rt△ABC.請(qǐng)你按照同樣的要求,在右邊的兩個(gè)正方形網(wǎng)格中各畫(huà)出一個(gè)直角三角形,并使三個(gè)網(wǎng)格中的直角三角形互不全等______.

查看答案和解析>>

同步練習(xí)冊(cè)答案