已知sinα•cosα=
1
8
,且0°<α<45°,則cosα-sinα的值為(  )
分析:把已知條件兩邊都乘以2,然后再根據(jù)cos2α+sin2α=1,進(jìn)行配方,然后根據(jù)銳角三角函數(shù)值求出cosα與sinα的取值范圍,從而得到cosα-sinα>0,然后開方即可得解.
解答:解:∵sinα•cosα=
1
8

∴2sinα•cosα=
1
4
,
∴cos2α+sin2α-2sinα•cosα=1-
1
4
,
即(cosα-sinα)2=
3
4
,
∵0°<α<45°,
2
2
<cosα<1,0<sinα<
2
2
,
∴cosα-sinα>0,
∴cosα-sinα=
3
2

故選A.
點(diǎn)評:本題考查了同角的三角函數(shù)的關(guān)系,利用好cos2α+sin2α=1,并求出cosα-sinα>0是解題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

已知sinα•cosα=
1
8
,45°<α<90°,則cosα-sinα=( 。
A、
3
2
B、-
3
2
C、
3
4
D、±
3
2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知sinαcosα=
1
8
,則sinα-cosα的值為(  )
A、
3
2
B、-
3
2
C、
3
4
D、±
3
2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知sinα+cosα=
32
,則sinα•cosα=
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知sinαcosα=
1
8
,且0°<α<45°,則sinα-cosα的值為(  )

查看答案和解析>>

同步練習(xí)冊答案