11.大慶素有百湖之城的美稱,如圖所示.在臨湖高出水面50米的塔AB頂層A處望見一艘飛艇停留在平靜的湖面上空某處.觀察到艇底部醒目標(biāo)志陽目志P處的仰角為45°,又觀察到其在湖中的影像的俯角為60°,試求飛艇距湖面的高度h(結(jié)果可用含根號(hào)的式子表示).

分析 設(shè)AC=x,則PC=AC=x,根據(jù)山頂A處高出水面50m,得出DC=50,DP′=x+50,根據(jù)∠P′AC=60°,得出P′C=$\sqrt{3}$x,DP′=$\sqrt{3}$x-50,從而列出方程,求出x的值,即可求得飛艇距湖面的高度h.

解答 解:點(diǎn)P在湖中的影像為P′,如右圖所示,
設(shè)AC=xm,
在Rt△ACP中∠PAC=45°,則∠P=45°,
所以PC=AC=x,
∵山頂A處高出水面50m,
∴DC=50,
∴DP′=DP=PC+DC=x+50,
∵∠P′AC=60°,
∴P′C=tan60°•AC=$\sqrt{3}$x,
∴DP′=P′C-DC=$\sqrt{3}$x-50,
∴x+50=$\sqrt{3}$x-50,
x=50($\sqrt{3}$+1),
∴h=PD=50$\sqrt{3}$+100,
答:飛艇離湖面的高度是(50$\sqrt{3}$+100)m.

點(diǎn)評(píng) 本題考查了解直角三角形的應(yīng)用-仰角俯角問題,解題的關(guān)鍵是能借助俯角、仰角構(gòu)造直角三角形并根據(jù)數(shù)形結(jié)合的思想利用三角函數(shù)解直角三角形.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:解答題

1.如圖所示,在鐵路線CD同側(cè)有兩個(gè)村莊A,B,它們到鐵路線的距離分別是15km和10km,作AC⊥CD,BD⊥CD,垂足分別為C,D,且CD=25,現(xiàn)在要在鐵路旁建一個(gè)農(nóng)副產(chǎn)品收購站E,使A,B兩村莊到收購站的距離相等,用你學(xué)過的知識(shí),通過計(jì)算,確定點(diǎn)E的位置.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

2.先閱讀理解下列例題,再按例題解一元二次不等式.
例:解二元一次不等式6x2-x-2>0
解:把6x2-x-2分解因式,得6x2-x-2=(3x-2)(2x+1)
又6x2-x-2>0,所以(3x-2)(2x+1)>0
由有理數(shù)的乘法法則“兩數(shù)相乘,同號(hào)得正”有(1)$\left\{\begin{array}{l}{3x-2>0}\\{2x+1>0}\end{array}\right.$或(2)$\left\{\begin{array}{l}{3x-2<0}\\{2x+1<0}\end{array}\right.$
解不等式組(1)得x>$\frac{2}{3}$;解不等式組(2)得x<-$\frac{1}{2}$,所以6x2-x-2>0
的解集為x>$\frac{2}{3}$或x<-$\frac{1}{2}$
求一元二次不等式2x2-14x-16<0的解集.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

19.下列長(zhǎng)度的三條線段,能組成三角形的是(  )
A.3,6,9B.5,6,11C.5,6,10D.1,4,7

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

6.先化簡(jiǎn),再求值:(x-4)(x+4y)+(3x-4y)2,其中x=2,y=-1.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

16.如圖:已知A、B、C是數(shù)軸上的三點(diǎn),點(diǎn)C表示的數(shù)是6,BC=4,AB=12,
(1)寫出數(shù)軸上A、B兩點(diǎn)表示的數(shù);
(2)動(dòng)點(diǎn)P、Q分別從A、C同時(shí)出發(fā),點(diǎn)P以每秒2個(gè)單位長(zhǎng)度的速度沿?cái)?shù)軸向右勻速運(yùn)動(dòng),點(diǎn)Q以每秒1個(gè)單位長(zhǎng)度的速度沿?cái)?shù)軸向左勻速運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t(t>0)秒,t為何值時(shí),原點(diǎn)O、與P、Q三點(diǎn)中,有一點(diǎn)恰好是另兩點(diǎn)所連線段的中點(diǎn).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

3.直線y=$\frac{1}{2}$x+k與x軸、y軸的交點(diǎn)分別為A、B,如果△AOB的面積S≤1,那么,k的取值范圍是( 。
A.-1≤k≤1B.0<k≤1C.k≤1D.k≤-1或k≥1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

6.如圖,在Rt△ABC中,∠C=90°,點(diǎn)O在AB上,以O(shè)為圓心,OA長(zhǎng)為半徑的圓與AC、AB分別交于點(diǎn)D、E,且∠CBD=∠A.
(1)判斷直線BD與⊙O的位置關(guān)系,并證明你的結(jié)論;
(2)若AD:AO=8:5,BC=3,求BD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

7.如圖1,已知拋物線y=ax2-$\frac{3}{2}$x+c與x軸相交于A、B兩點(diǎn),并與直線y=$\frac{1}{2}$x-2交于B、C兩點(diǎn),其中點(diǎn)C是直線y=x-2與y軸的交點(diǎn),連接AC.
(1)點(diǎn)B的坐標(biāo)是(4,0);點(diǎn)C的坐標(biāo)是(0,-2);
(2)求拋物線的解析式;
(3)設(shè)點(diǎn)E是線段CB上的一個(gè)動(dòng)點(diǎn)(不與點(diǎn)B、C重合),直線EF∥y軸,交拋物線與點(diǎn)F,問點(diǎn)E運(yùn)動(dòng)到何處時(shí),線段EF的長(zhǎng)最大?并求出EF的長(zhǎng)的最大值;
(4)如圖2,點(diǎn)D是拋物線的頂點(diǎn),判斷直線CD是否是經(jīng)過A、B、C三點(diǎn)的圓的切線,并說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案