【題目】如圖,在平面直角坐標系中,直線分別與軸,軸交于兩點.
(1)求線段AB的長度;
(2)若點在第二象限,且△為等腰直角三角形,求點的坐標;
【答案】(1)5(2)(-3,7)(-7,4)(-,)
【解析】
(1)先求出A,B的坐標,根據勾股定理,得到AB的長;
(2)分三種情況分別進行討論.
解:(1)當x=0,得y=3,
當y=0,x=-4,
∴A(-4,0),B(0,3),即OA=4,OB=3,
∴根據勾股定理AB=5;
(2)①過點A作C1A⊥AB,截取AC1=AB,此時△AC1B是等腰直角三角形,
過C1作C1D1⊥x軸于D1,此時Rt△C1D1A≌Rt△AOB,
∴C1D1=OA=4,AD1=OB=3,OD1=7,
∴C1(-7,4);
②過點B作C2B⊥AB,截取BC2=AB,此時△AC2B是等腰直角三角形,
過C2作C2D2⊥y軸于D2,此時Rt△C2D2B≌Rt△BOA,
∴C2D2=OB=3,BD2=OA=4,OD2=7,
∴C2(-3,7);
③以AB為腰,作等腰直角△AC3B,
過C3作C3D3⊥OA,作C3D4⊥OB,此時Rt△C3D3A≌Rt△C3D4B,四邊形C3D3OD4是正方形,
∴AD3=BD4,
∴OA-AD3=OB+BD4,即4-AD3=3+BD4,
∴AD3=BD4=,
∴OD3=4-,OD4=3+=,
∴C3(-,).
故答案為:(1)5;(2)(-3,7)(-7,4)(-,)
科目:初中數學 來源: 題型:
【題目】如圖,直線AB,CD相交于點O,OE是∠AOC的平分線,∠BOC=130°,∠BOF=140°,則∠EOF的度數為( )
A. 95° B. 65°
C. 50° D. 40°
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,平面直角坐標系中,每個小正方形邊長都是1.
(1)按要求作圖: △ABC關于軸對稱的圖形△;
(2)將點先向上平移個單位,再向右平移個單位得到點的坐標為 ;
(3)△的面積為 ;
(4)若為軸上一點,連接 ,則△周長的最小值為 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,從熱氣球C處測得地面A,B兩點的俯角分別為30°,45°,此時熱氣球C處所在位置到地面上點A的距離為400米.求地面上A,B兩點間的距離.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】一輛汽車行駛時的耗油量為升/千米,如圖是油箱剩余油量(升)關于加滿油后行駛的路程(千米)的函數圖象.
(1)根據圖象,直接寫出汽車行駛千米時,油箱內的剩余油量為 升,加滿油時油箱的油量為 升;
(2)求關于的函數關系式;
(3)計算該汽車在剩余油量升時,已行駛的路程.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖所示,數軸被折成,圓的周長為4個單位長度,在圓的4等分點處標上數字0,1,2,3。先讓圓周上數字2所對應的點與數軸上的數3所對應的點重合,數軸固定,圓緊貼數軸沿著數軸的正方向滾動,那么數軸上的數2009將與圓周上的數字_________重合。
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知二次函數圖象的對稱軸為直線x=2,頂點為點C,直線y=x+m與該二次函數的圖象交于點A,B兩點,其中點A的坐標為(5,8),點B在y軸上.
(1)求m的值和該二次函數的表達式.P為線段AB上一個動點(點P不與A,B兩點重合),過點P作x軸的垂線,與這個二次函數的圖象交于點E.
①設線段PE的長為h,求h與x之間的函數關系式,并寫出自變量x的取值范圍.
②若直線AB與這個二次函數圖象的對稱軸的交點為D,求當四邊形DCEP是平行四邊形時點P的坐標.
(2)若點P(x,y)為直線AB上的一個動點,試探究:以PB為直徑的圓能否與坐標軸相切?如果能請求出點P的坐標,如果不能,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知二次函數y=﹣ x2+bx+c的圖象與x軸的正半軸相交于點A(2,0)和點B、與y軸相交于點C,它的頂點為M、對稱軸與x軸相交于點N.
(1)用b的代數式表示頂點M的坐標;
(2)當tan∠MAN=2時,求此二次函數的解析式及∠ACB的正切值.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com