(2011•泰安)已知:在梯形ABCD中,AD∥BC,∠ABC=90°,BC=2AD,E是BC的中點,連接AE、AC.
(1)點F是DC上一點,連接EF,交AC于點O(如圖1),求證:△AOE∽△COF;
(2)若點F是DC的中點,連接BD,交AE與點G(如圖2),求證:四邊形EFDG是菱形.

(1)證明:∵點E是BC的中點,BC=2AD,
∴EC=BE=BC=AD,
又∵AD∥DC,
∴四邊形AECD為平行四邊形,
∴AE∥DC,
∴∠AEO=∠CFO,∠EAO=∠FCO,
∴△AOE∽△COF;
(2)證明:連接DE,

∵DE平行且等于BE,
∴四邊形ABED是平行四邊形,
又∠ABE=90°,
∴□ABED是矩形,
∴GE=GA=GB=GD=BD=AE,
∴E、F分別是BC、CD的中點,
∴EF、GE是△CBD的兩條中線,
∴EF=BD=GD,GE=CD=DF,
又GE=GD,
∴EF=GD=GE=DF,
∴四邊形EFDG是菱形.

解析

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

(2011•泰安)已知:在△ABC中,AC=BC,∠ACB=90°,點D是AB的中點,點E是AB邊上一點.
(1)直線BF垂直于直線CE于點F,交CD于點G(如圖1),求證:AE=CG;
(2)直線AH垂直于直線CE,垂足為點H,交CD的延長線于點M(如圖2),找出圖中與BE相等的線段,并證明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2011•泰安)已知:在梯形ABCD中,AD∥BC,∠ABC=90°,BC=2AD,E是BC的中點,連接AE、AC.
(1)點F是DC上一點,連接EF,交AC于點O(如圖1),求證:△AOE∽△COF;
(2)若點F是DC的中點,連接BD,交AE與點G(如圖2),求證:四邊形EFDG是菱形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2011•泰安)已知一次函數(shù)y=mx+n﹣2的圖象如圖所示,則m、n的取值范圍是( 。
A.m>0,n<2B.m>0,n>2
C.m<0,n<2D.m<0,n>2

查看答案和解析>>

科目:初中數(shù)學 來源:2011年初中畢業(yè)升學考試(山東泰安卷)數(shù)學解析版 題型:解答題

(2011•泰安)已知:在△ABC中,AC=BC,∠ACB=90°,點D是AB的中點,點E是AB邊上一點.
(1)直線BF垂直于直線CE于點F,交CD于點G(如圖1),求證:AE=CG;
(2)直線AH垂直于直線CE,垂足為點H,交CD的延長線于點M(如圖2),找出圖中與BE相等的線段,并證明.

查看答案和解析>>

同步練習冊答案