(2006•泉州)如圖,在Rt△ABC中,∠C=90°,AC=2,BC的長為常數(shù),點(diǎn)P從起點(diǎn)C出發(fā),沿CB向終點(diǎn)B運(yùn)動(dòng),設(shè)點(diǎn)P所走過路程CP的長為x,△APB的面積為y,則下列圖象能大致反映y與x之間的函數(shù)關(guān)系的是( )

A.
B.
C.
D.
【答案】分析:解決本題的關(guān)鍵是讀懂圖意,表示出y與x的關(guān)系式,從而判斷圖象的形狀.
解答:解:設(shè)BC的長度為常數(shù)k,則y=×2×k-×2×x=k-x.那么此函數(shù)為一次函數(shù),
因?yàn)閤的系數(shù)小于0,所以應(yīng)是減函數(shù).
故選C.
點(diǎn)評(píng):可設(shè)出所需量為一個(gè)常數(shù),表示出y與x的函數(shù)關(guān)系,再求解.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2006年全國中考數(shù)學(xué)試題匯編《反比例函數(shù)》(06)(解析版) 題型:解答題

(2006•泉州)如圖,在直角坐標(biāo)系中,O為原點(diǎn),A(4,12)為雙曲線(x>0)上的一點(diǎn).
(1)求k的值;
(2)過雙曲線上的點(diǎn)P作PB⊥x軸于B,連接OP,若Rt△OPB兩直角邊的比值為,試求點(diǎn)P的坐標(biāo);
(3)分別過雙曲線上的兩點(diǎn)P1、P2,作P1B1⊥x軸于B1,P2B2⊥x軸于B2,連接OP1、OP2.設(shè)Rt△OP1B1、Rt△OP2B2的周長分別為l1、l2,內(nèi)切圓的半徑分別為r1、r2,若,試求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2006年福建省泉州市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2006•泉州)如圖,在直角坐標(biāo)系中,O為原點(diǎn),A(4,12)為雙曲線(x>0)上的一點(diǎn).
(1)求k的值;
(2)過雙曲線上的點(diǎn)P作PB⊥x軸于B,連接OP,若Rt△OPB兩直角邊的比值為,試求點(diǎn)P的坐標(biāo);
(3)分別過雙曲線上的兩點(diǎn)P1、P2,作P1B1⊥x軸于B1,P2B2⊥x軸于B2,連接OP1、OP2.設(shè)Rt△OP1B1、Rt△OP2B2的周長分別為l1、l2,內(nèi)切圓的半徑分別為r1、r2,若,試求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2006年福建省泉州市中考數(shù)學(xué)試卷(解析版) 題型:選擇題

(2006•泉州)如圖,物體的正視圖是( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2006年福建省泉州市中考數(shù)學(xué)試卷(解析版) 題型:填空題

(2006•泉州)如圖,△ABC為⊙O的內(nèi)接三角形,AB是直徑,∠A=20°,則∠B=    度.

查看答案和解析>>

同步練習(xí)冊(cè)答案