【題目】已知,如圖,B=C=90 ,M是BC的中點,DM平分ADC.

(1)若連接AM,則AM是否平分BAD?請你證明你的結論;

(2)線段DM與AM有怎樣的位置關系?請說明理由.

【答案】(1)平分;(2)DMAM

【解析】

試題分析:(1)過點M作MEAD于點E,再根據(jù)角平分線的性質得到MC=ME,由M為BC的中點可得MC=MB即得ME=MB,再結合MBAB,MEAD即可證得結論;

(2)根據(jù)角平分線的性質可得ADM=ADC,DAM=BAD,由B=C=90可得AB//CD,即可得到ADC+BAD=180,再根據(jù)角平分線的性質求解即可.

(1)AM是平分BAD,

理由如下:過點M作MEAD于點E

DM平分ADC且MC CD,MEAD

MC=ME

M為BC的中點

MC=MB

ME=MB

MBABMEAD

AM平分BAD;

(2)DMAM

理由如下:DM平分ADC

∴∠ADM=ADC

AM平分BAD

∴∠DAM=BAD

∵∠B=C=90

AB//CD

∴∠ADC+BAD=180

∴∠ADM+DAM=ADC+BAD=ADC+BAD)=90

∴∠DMA=90

DMAM.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】已知x2+2x10,則3x2+6x2___

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知△ABC,(1)如圖1,若D點是△ABC內任一點、求證:∠D=∠A+∠ABD+∠ACD.

(2)D點是△ABC外一點,位置如圖2所示.猜想∠D、∠A、∠ABD、∠ACD有怎樣的關系?請直接寫出所滿足的關系式.(不需要證明)

(3)D點是△ABC外一點,位置如圖3所示、猜想∠D、∠A、∠ABD、∠ACD之間有怎樣的關系,并證明你的結論.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某小組7位學生的中考體育測試成績(滿分30分)依次為27,30,29,27,30,28,30.則這組數(shù)據(jù)的眾數(shù)與中位數(shù)分別是( )
A.30,27
B.30,29
C.29,30
D.30,28

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在邊長為6的正方形ABCD中,將正方形ABCD繞點A逆時針旋轉角度α(0°α90°),得到正方形AEFG,EF交線段CD于點P,F(xiàn)E的延長線交線段BC于點H,連接AH、AP.

(1)求證:ADP≌△AEP;

(2)HAP的度數(shù);判斷線段HP、BH、DP的數(shù)量關系,并說明理由;

(3)連接DE、EC、CF、DF得到四邊形CFDE,在旋轉過程中,四邊形CFDE能否為矩形?若能,求出BH的值;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,點(2﹣1)關于原點對稱的點的坐標是 _________ 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在ΔABC中,AB>BC,AB=AC,DEAB的垂直平分線,垂足為D點,

AC于點E.

(1)若∠ABE=38°,求∠EBC的度數(shù);

(2)若ΔABC的周長為36cm,一邊為13cm,求ΔBCE的周長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知∠1+∠2=180°,∠B=∠3,你能判斷∠C與∠AED的大小關系嗎?并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列計算正確的是( )

A.a6÷a2a3B.a2+a3a5C.(a2)3=a6D.(a+b)2=a2+b2

查看答案和解析>>

同步練習冊答案