【題目】如圖1,在梯形ABCD中,AB∥CD,∠B=90°,AB=2,CD=1,BC=m,P為線段BC上的一動點,且和B、C不重合,連接PA,過P作PE⊥PA交CD所在直線于E.設(shè)BP=x,CE=y.

(1)求y與x的函數(shù)關(guān)系式;
(2)若點P在線段BC上運動時,點E總在線段CD上,求m的取值范圍;
(3)如圖2,若m=4,將△PEC沿PE翻折至△PEG位置,∠BAG=90°,求BP長.

【答案】
(1)

解:∵∠APB+∠CPE=90°,∠CEP+∠CPE=90°,

∴∠APB=∠CEP,又∵∠B=∠C=90°,

∴△ABP∽△PCE,

,即 ,

∴y= x2+ x.


(2)

解:∵y= x2+ x= (x﹣ 2+

∴當x= 時,y取得最大值,最大值為

∵點P在線段BC上運動時,點E總在線段CD上,

≤1,解得m≤

∴m的取值范圍為:0<m≤


(3)

解:由折疊可知,PG=PC,EG=EC,∠GPE=∠CPE,

又∵∠GPE+∠APG=90°,∠CPE+∠APB=90°,

∴∠APG=∠APB.

∵∠BAG=90°,∴AG∥BC,

∴∠GAP=∠APB,

∴∠GAP=∠APG,

∴AG=PG=PC.


【解析】(1)證明△ABP∽△PCE,利用比例線段關(guān)系求出y與x的函數(shù)關(guān)系式;(2)根據(jù)(1)中求出的y與x的關(guān)系式,利用二次函數(shù)性質(zhì),求出其最大值,列不等式確定m的取值范圍;(3)根據(jù)翻折的性質(zhì)及已知條件,構(gòu)造直角三角形,利用勾股定理求出BP的長度.解答中提供了三種解法,可認真體會.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知AB為半圓O的直徑,C為半圓O上一點,連接AC,BC,過點O作OD⊥AC于點D,過點A作半圓O的切線交OD的延長線于點E,連接BD并延長交AE于點F.

(1)求證:AEBC=ADAB;
(2)若半圓O的直徑為10,sin∠BAC= ,求AF的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲、乙兩人在直線跑道上同起點、同終點、同方向勻速跑步500m,先到終點

的人原地休息.已知甲先出發(fā)2s.在跑步過程中,甲、乙兩人的距離y(m)與乙出發(fā)的時間t(s)之間的關(guān)系

如圖所示,給出以下結(jié)論:a=8;b=92;c=123.其中正確的是【 】

A.①②③ B.僅有①② C.僅有①③ D.僅有②③

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】方程x2+3x﹣1=0的根可視為函數(shù)y=x+3的圖象與函數(shù) 的圖象交點的橫坐標,則方程x3+2x﹣1=0的實根x0所在的范圍是(
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為聲援揚州“運河申遺”,某校舉辦了一次運河知識競賽,滿分10分,學生得分為整數(shù),成績達到6分以上(包括6分)為合格,達到9分以上(包含9分)為優(yōu)秀.這次競賽中甲乙兩組學生成績分布的條形統(tǒng)計圖如圖所示.
(1)補充完成下面的成績統(tǒng)計分析表:

組別

平均分

中位數(shù)

方差

合格率

優(yōu)秀率

甲組

6.7

3.41

90%

20%

乙組

7.5

1.69

80%

10%


(2)小明同學說:“這次競賽我得了7分,在我們小組中排名屬中游略偏上!”觀察上表可知,小明是組的學生;(填“甲”或“乙”)
(3)甲組同學說他們組的合格率、優(yōu)秀率均高于乙組,所以他們組的成績好于乙組.但乙組同學不同意甲組同學的說法,認為他們組的成績要好于甲組.請你給出兩條支持乙組同學觀點的理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在以點O為原點的平面直角坐標系中,一次函數(shù)y=﹣ x+1的圖象與x軸交于點A,與y軸交于點B,點C在直線AB上,且OC= AB,反比例函數(shù)y= 的圖象經(jīng)過點C,則所有可能的k值為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀材料
如圖①,△ABC與△DEF都是等腰直角三角形,∠ACB=∠EDF=90°,且點D在AB邊上,AB、EF的中點均為O,連結(jié)BF、CD、CO,顯然點C、F、O在同一條直線上,可以證明△BOF≌△COD,則BF=CD.
解決問題

(1)將圖①中的Rt△DEF繞點O旋轉(zhuǎn)得到圖②,猜想此時線段BF與CD的數(shù)量關(guān)系,并證明你的結(jié)論;
(2)如圖③,若△ABC與△DEF都是等邊三角形,AB、EF的中點均為O,上述(1)中的結(jié)論仍然成立嗎?如果成立,請說明理由;如不成立,請求出BF與CD之間的數(shù)量關(guān)系;
(3)如圖④,若△ABC與△DEF都是等腰三角形,AB、EF的中點均為0,且頂角∠ACB=∠EDF=α,請直接寫出 的值(用含α的式子表示出來)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB是半圓O的直徑,且AB=8,點C為半圓上的一點.將此半圓沿BC所在的直線折疊,若圓弧BC恰好過圓心O,則圖中陰影部分的面積是 . (結(jié)果保留π)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,路邊有一根電線桿AB和一塊正方形廣告牌(不用考慮牌子的厚度).有一天,小明突然發(fā)現(xiàn),在太陽光照射下,電線桿頂端A的影子剛好落在正方形廣告牌的上邊中點G處,而正方形廣告牌的影子剛好落在地面上E點,已知BC=5米,正方形邊長為2米,DE=4米.則此時電線桿的高度是(  )米.

A.8
B.7
C.6
D.5

查看答案和解析>>

同步練習冊答案