如圖所示,在直角坐標平面內,函數(shù)數(shù)學公式的圖象經過A(1,4),B(a,b),其中a>1.過點A作x軸垂線,垂足為C,過點B作y軸垂線,垂足為D,連接AD、DC、CB.
(1)若△ABD的面積為4,求點B的坐標;
(2)求證:DC∥AB;
(3)四邊形ABCD能否為菱形?如果能,請求出四邊形ABCD為菱形時,直線AB的函數(shù)解析式;如果不能,請說明理由.

(1)解:根據(jù)題意A(1,4),得C(1,0),
又∵B(a,b),故設點D(0,b),
∵A(1,4)在反比例函數(shù)y=的圖象上,
∴將x=1,y=4代入反比例函數(shù)解析式得:4=,即m=4,
∵根據(jù)點B(a,b)在反比例函數(shù)圖象上,
∴將x=a,y=b代入反比例函數(shù)解析式得:ab=4,
∴S△ABD=BD•AM=×a×(4-b)=4,即4a-ab=4a-4=8,
∴a=3,b=
則點B的坐標為(3, );

(2)證明:由C(1,0),設D(0,b),
則直線DC的斜率為kDC==-b.
同理,根據(jù)A(1,4),(a,b),可得直線AB的斜率為kAB=
∵點B在反比例函數(shù)圖象上,有ab=4,
∴kAB===-b=kDC,
則DC∥AB;

(3)四邊形ABCD能為菱形,而四邊形ABCD的對角線互相垂直,
故當ABCD是平行四邊形時,四邊形ABCD就是菱形,
由(2)得DC∥AB,要使ABCD是平行四邊形,
只需DC=AB,即=,
兩邊平方得:1-2a+a2+16-8b+b2=1+b2,即a2-2a-8b+16=0①,
又∵ab=4,即b=②,
將②代入①得:(a-2)(a2+16)=0,
解得:a=2,
將a=2代入②得:b=2,
∴B(2,2),
則點為B(2,2)時,四邊形ABCD為菱形時,
此時直線AB的斜率為kAB==-2,
由直線的點斜式方程,得AB方程為y-2=-2(x-2),即y=-2x+6,
則所求函數(shù)解析式為y=-2x+6.
分析:(1)根據(jù)題意AC垂直于x軸,由A的坐標得到C(1,0),設出點D坐標和反比例函數(shù)解析式,結合點A(1,4)在函數(shù)圖象上,得到反比例函數(shù)解析式,從而得到ab=4,再根據(jù)△ABD的面積為4,根據(jù)底為BD,高為AM,利用三角形的面積公式表示出三角形ABD的面積,由此三角形面積為4列出關系式,將ab=4代入可得出a的值,進而確定出b的值,即可得到點B的坐標;
(2)根據(jù)經過兩點直線斜率的公式,結合C、D的坐標,得到直線DC的斜率為-b,同理根據(jù)A、B兩點的坐標,得到直線AB的斜率關于a、b的式子,再根據(jù)反比例解析式,有ab=4,代入化簡可得kAB==-b,直線AB與直線DC的斜率相等,根據(jù)斜率相等的兩直線平行可得出DC∥AB;
(3)根據(jù)條件可知四邊形ABCD的對角線互相垂直,只要四邊形ABCD是平行四邊形,它就是一個菱形,再由(2)知DC∥AB,所以只需DC=AB即可,接下來利用兩點的距離公式,根據(jù)CD=AB列出關于a、b的等式,結合ab=4,求出a與b的值,確定出B點坐標為(2,2),此時四邊形ABCD為菱形,最后用經過兩點的直線斜率的公式,得出此時直線AB的斜率,再由B的坐標,即可求出直線AB方程.
點評:本題主要考查了直線的斜率和直線的方程,兩點的距離公式,坐標系內三角形面積求法,以及菱形的判定,從圖上獲取有用的信息是解題的關鍵所在.已知點在圖象上,那么點一定滿足這個函數(shù)解析式,反過來如果這點滿足函數(shù)的解析式,那么這個點也一定在函數(shù)圖象上,在分析問題時,注意將數(shù)形結合在一起.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

如圖所示,在直角坐標平面內,O為原點,點A的坐標為(10,0),點B在第一象限內,BO=5,精英家教網sin∠BOA=
35

求:(1)點B的坐標;(2)cos∠BAO的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•大豐市一模)如圖所示,在直角坐標平面內,函數(shù)y=
mx
(x>0,m是常數(shù))
的圖象經過A(1,4),B(a,b),其中a>1.過點A作x軸垂線,垂足為C,過點B作y軸垂線,垂足為D,連接AD、DC、CB.
(1)若△ABD的面積為4,求點B的坐標;
(2)求證:DC∥AB;
(3)四邊形ABCD能否為菱形?如果能,請求出四邊形ABCD為菱形時,直線AB的函數(shù)解析式;如果不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖所示,在直角坐標平面內,函數(shù)的圖象經過A(1,4),B(a,b),其中a>1.過點A作x軸垂線,垂足為C,過點B作y軸垂線,垂足為D,連結AD、DC、CB.

1.若△ABD的面積為4,求點B的坐標

2.求證:DC∥AB

3.四邊形ABCD能否為菱形?如果能,請求出四邊形ABCD 為菱形時,直線AB的函數(shù)解析式;如果不能,請說明理由.

 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖所示,在直角坐標平面內,函數(shù)的圖象經過A(1,4),B(a,b),其中a>1.過點A作x軸垂線,垂足為C,過點B作y軸垂線,垂足為D,連結AD、DC、CB.

【小題1】若△ABD的面積為4,求點B的坐標
【小題2】求證:DC∥AB
【小題3】四邊形ABCD能否為菱形?如果能,請求出四邊形ABCD 為菱形時,直線AB的函數(shù)解析式;如果不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2012年江蘇省鹽城市大豐市中考數(shù)學一模試卷(解析版) 題型:解答題

如圖所示,在直角坐標平面內,函數(shù)的圖象經過A(1,4),B(a,b),其中a>1.過點A作x軸垂線,垂足為C,過點B作y軸垂線,垂足為D,連接AD、DC、CB.
(1)若△ABD的面積為4,求點B的坐標;
(2)求證:DC∥AB;
(3)四邊形ABCD能否為菱形?如果能,請求出四邊形ABCD為菱形時,直線AB的函數(shù)解析式;如果不能,請說明理由.

查看答案和解析>>

同步練習冊答案