【題目】如圖,拋物線y=ax2+bx+6與x軸交于點A(6,0),B(﹣1,0),與y軸交于點C.
(1)求拋物線的解析式;
(2)若點M為該拋物線對稱軸上一點,當CM+BM最小時,求點M的坐標.
(3)拋物線上是否存在點P,使△BCP為等腰三角形?若存在,有幾個?并請在圖中畫出所有符合條件的點P,(保留作圖痕跡);若不存在,說明理由.
【答案】(1)y=﹣x2+5x+6;(2)M(,);(3)存在5個滿足條件的P點,尺規(guī)作圖見解析
【解析】
(1)將A(6,0),B(﹣1,0)代入y=ax2+bx+6即可;
(2)作點C關于對稱軸x=的對稱點C',連接BC'與對稱軸交于點M,則CM+BM=C'M+BM=BC最小;求出BC'的直線解析式為y=x+1,即可求M點;
(3)根據(jù)等腰三角形腰的情況分類討論,然后分別尺規(guī)作圖即可.
解:(1)將A(6,0),B(﹣1,0)代入y=ax2+bx+6,
可得a=﹣1,b=5,
∴y=﹣x2+5x+6;
(2)作點C關于對稱軸x=的對稱點C',連接BC'與對稱軸交于點M,
根據(jù)兩點之間線段最短,則CM+BM=C'M+BM=C'B最小,
∵C(0,6),
∴C'(5,6),
設直線BC'的解析式為y=kx+b
將B(﹣1,0)和C'(5,6)代入解析式,得
解得:
∴直線BC'的解析式為y=x+1,
將x=代入,解得y=
∴M(,);
(3)存在5個滿足條件的P點;尺規(guī)作圖如下:
①若CB=CP時,以C為原點,BC的長為半徑作圓,交拋物線與點P,如圖1所示,此時點P有兩種情況;
②若BC=BP時,以B為原點,BC的長為半徑作圓,交拋物線與點P,如圖2所示,此時點P即為所求;
③若BP=CP,則點P在BC的中垂線上,作BC的中垂線,交拋物線與點P,如圖3所示,此時點P有兩種情況;
故存在5個滿足條件的P點.
科目:初中數(shù)學 來源: 題型:
【題目】為加強中小學生安全教育,某校組織了“防溺水”知識競賽,對表現(xiàn)優(yōu)異的班級進行獎勵,學校購買了若干副乒乓球拍和羽毛球拍,購買2副乒乓球拍和1副羽毛球拍共需116元;購買3幅乒乓球拍和2幅羽毛球拍共需204元.
(1)求購買1副乒乓球拍和1副羽毛球拍各需多少元;
(2)若學校購買乒乓球拍和羽毛球拍共30幅,且支出不超過1480元,則最多能夠購買多少副羽毛球拍?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在邊長為l的正方形ABCD中,E是邊CD的中點,點P是邊AD上一點(與點A、D不重合),射線PE與BC的延長線交于點Q.
(1)求證:;
(2)過點E作交PB于點F,連結AF,當時,①求證:四邊形AFEP是平行四邊形;
②請判斷四邊形AFEP是否為菱形,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】二次函數(shù)y=x2+bx﹣t的對稱軸為x=2.若關于x的一元二次方程x2+bx﹣t=0在﹣1<x<3的范圍內(nèi)有實數(shù)解,則t的取值范圍是( 。
A. ﹣4≤t<5B. ﹣4≤t<﹣3C. t≥﹣4D. ﹣3<t<5
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一次函數(shù)與反比例函數(shù)的圖象交于、兩點,點在以為圓心,1為半徑的上,是的中點,已知長的最小值為1,則的值為______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點A的坐標為(3,2),點B的坐標為(3,0).作如下操作:
(1)以點A為旋轉(zhuǎn)中心,將△ABO順時針方向旋轉(zhuǎn)90°,得到△AB1O1;
(2)以點O為位似中心,將△ABO放大,得到△A2B2O,使位似比為1:2,且點A2在第三象限.
①在圖中畫出△AB1O1和△A2B2O;
②請直接寫出點A2的坐標: .
③如果△ABO內(nèi)部一點M的坐標為(m,n),寫出點M在△A2B2O內(nèi)的對應點N的坐標: .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com