(2002•無錫)已知數(shù)1和2,請再寫出一個數(shù),使這三個數(shù)恰好是一個直角三角形三邊的長,則這個數(shù)可以是    (只需填寫一個即可).
【答案】分析:分情況,根據(jù)勾股定理即可解答.
解答:解:如果1和2是直角邊,斜邊是;
如果2是斜邊,另一條直角邊是
因此這個數(shù)可以是
點評:本題主要考查了勾股定理,要弄清1,2分別是直角邊和斜邊以及都是直角邊兩種情況的不同算法.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:2002年全國中考數(shù)學試題匯編《二次函數(shù)》(04)(解析版) 題型:解答題

(2002•無錫)已知直線y=kx-4(k>0)與x軸和y軸分別交于A、C兩點;開口向上的拋物線y=ax2+bx+c過A、C兩點,且與x軸交于另一點B.
(1)如果A、B兩點到原點O的距離AO、BO滿足AO=3BO,點B到直線AC的距離等于,求這條直線和拋物線的解析式.
(2)問是否存在這樣的拋物線,使得tan∠ACB=2,且△ABC的外接圓截y軸所得的弦長等于5?若存在,求出這樣的拋物線的解析式;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2002年江蘇省無錫市中考數(shù)學試卷(解析版) 題型:解答題

(2002•無錫)已知直線y=kx-4(k>0)與x軸和y軸分別交于A、C兩點;開口向上的拋物線y=ax2+bx+c過A、C兩點,且與x軸交于另一點B.
(1)如果A、B兩點到原點O的距離AO、BO滿足AO=3BO,點B到直線AC的距離等于,求這條直線和拋物線的解析式.
(2)問是否存在這樣的拋物線,使得tan∠ACB=2,且△ABC的外接圓截y軸所得的弦長等于5?若存在,求出這樣的拋物線的解析式;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2002年全國中考數(shù)學試題匯編《圖形的相似》(04)(解析版) 題型:解答題

(2002•無錫)已知:如圖,⊙O的半徑為r,CE切⊙O于C,且與弦AB的延長線交于點E,CD⊥AB于D.如果CE=2BE,且AC、BC的長是關于x的方程x2-3(r-2)x+r2-4=0的兩個實數(shù)根.
求:(1)AC、BC的長;(2)CD的長.

查看答案和解析>>

科目:初中數(shù)學 來源:2002年全國中考數(shù)學試題匯編《圓》(10)(解析版) 題型:填空題

(2002•無錫)已知圓柱的母線長是5cm,底面半徑是2cm,則這個圓柱的側面積是    cm2

查看答案和解析>>

科目:初中數(shù)學 來源:2002年全國中考數(shù)學試題匯編《圓》(03)(解析版) 題型:選擇題

(2002•無錫)已知⊙O1與⊙O2的圓心距是9cm,它們的半徑分別為3cm和6cm,則這兩圓的位置關系是( )
A.外切
B.內切
C.相交
D.外離

查看答案和解析>>

同步練習冊答案