【題目】如圖,已知直線CBOA,COAB100°,點E、F在線段BC上,滿足∠FOBAOBαOE平分∠COF.

(1)用含有α的代數(shù)式表示∠COE的度數(shù);

(2)若沿水平方向向右平行移動AB,則∠OBC∶∠OFC的值是否發(fā)生變化?若變化,找出變化規(guī)律;若不變,求其比值.

【答案】1COE40°α;(2OBC∶∠OFC12.

【解析】1)先根據(jù)平行線的性質(zhì)得出∠AOC的度數(shù)與∠FBO=AOB,再由∠FOB=AOB,得出∠FBO=FOBOB平分∠AOF,根據(jù)OE平分∠COF,可知∠EOB=EOF+FOB,故可得出結(jié)論;

2)根據(jù)平行線的性質(zhì)可得出∠OBC=BOA,OFC=FOA,從而得出答案.

解:(1)CBOA

∴∠CAOC180°.

∵∠C100°,

∴∠AOC80°.

∵∠FOBAOBα,OE平分∠COF

∴∠EOFCOFFOBFOA,

∴∠EOBEOFFOB,

COFFOA,

(COFFOA) ,

AOC

40°. ,

OE平分∠COF,

∴∠COEFOE40°α.

(2)OBC∶∠OFC的值不發(fā)生改變.

BCOA,

∴∠FBOAOB ,

∵∠BOFAOB,

∴∠FBOBOF,

∵∠OFCFBOFOB,

∴∠OFC2OBC,

即∠OBC∶∠OFCOBC2OBC12.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】一個兩位數(shù),十位數(shù)字是a,十位數(shù)字比個位數(shù)字小2,這個兩位數(shù)是( 。

A.aa+2B.10aa+2C.10a+a+2D.10a+a2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲、乙兩人到某商店購買A型和B型兩種特惠商品,已知甲、乙兩人購買A型和B型兩種商品的件數(shù)和所花錢的總額如下表所示:

A型商品數(shù)量(件)

B型商品數(shù)量(件)

總額(元)

2

3

43

3

4

60

(1)試求A型和B型兩種商品的單價各是多少?

(2)假設兩人購買商品的件數(shù)相同,且兩人共花去了172,則甲、乙兩人購買的所有商品中,A型商品共有幾件?B型商品呢?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如果二次三項式x216x+m2是一個完全平方式,那么m的值是(

A.±8B.4C.±4D.8

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列各數(shù)中,比﹣1小的數(shù)是( 。

A.2B.0.5C.0D.1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】x1時,ax+b+1=﹣3,則(a+b1)(1ab)的值為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在一條筆直的高速公路上依次有3個標志點A、B、C,甲、乙兩車分別從A、C兩點同時出發(fā),勻速行駛,甲車從A→B→C,乙車從C→B→A,甲、乙兩車離B的距離y1、y2(千米)與行駛時間x(小時)之間的函數(shù)關系圖象如圖所示.觀察圖象,給出下列結(jié)論:①A、C之間的路程為690千米;②乙車比甲車每小時快30千米;③4.5小時兩車相遇;④點E的橫坐標表示兩車第二次相遇的時間;⑤點E的坐標為(7,180)其中正確的有________(把所有正確結(jié)論的序號都填在橫線上).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在正方形ABCD中,E、F分別是AB、BC上的點,且AE=BF.求證:CE=DF.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小強在教學樓的點P處觀察對面的辦公大樓.為了測量點P到對面辦公大樓上部AD的距離,小強測得辦公大樓頂部點A的仰角為45°,測得辦公大樓底部點B的俯角為60°,已知辦公大樓高46米,CD=10米.求點P到AD的距離(用含根號的式子表示).

查看答案和解析>>

同步練習冊答案