(2013•烏魯木齊)如圖,△ABC中,AD是中線,AE是角平分線,CF⊥AE于F,AB=5,AC=2,則DF的長為
3
2
3
2
分析:延長CF交AB于點G,證明△AFG≌△AFC,從而可得△ACG是等腰三角形,GF=FC,點F是CG中點,判斷出DF是△CBG的中位線,繼而可得出答案.
解答:解:延長CF交AB于點G,
∵在△AFG和△AFC中,
∠GAF=∠CAF
AF=AF
∠AFG=∠AFC
,
∴△AFG≌△AFC(ASA),
∴AC=AG,GF=CF,
又∵點D是BC中點,
∴DF是△CBG的中位線,
∴DF=
1
2
BG=
1
2
(AB-AG)=
1
2
(AB-AC)=
3
2

故答案為:
3
2
點評:本題考查了三角形的中位線定理,解答本題的關(guān)鍵是作出輔助線,同學(xué)們要注意培養(yǎng)自己的敏感性,一般出現(xiàn)即是角平分線又是高的情況,我們就需要尋找等腰三角形.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2013•烏魯木齊)下列運算正確的是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•烏魯木齊)如圖是某幾何體的三視圖,則該幾何體的體積是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•烏魯木齊)若關(guān)于x的方程式x2-x+a=0有實數(shù)根,則a的值可以是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•烏魯木齊)如圖,半圓O與等腰直角三角形兩腰CA、CB分別切于D、E兩點,直徑FG在AB上,若BG=
2
-1,則△ABC的周長為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•烏魯木齊)某倉庫調(diào)撥一批物資,調(diào)進物資共用8小時,調(diào)進物資4小時后同時開始調(diào)出物資(調(diào)進與調(diào)出的速度保持不變).該倉庫庫存物資m(噸)與時間t(小時)之間的函數(shù)關(guān)系如圖所示.則這批物資從開始調(diào)進到全部調(diào)出所需要的時間是(  )

查看答案和解析>>

同步練習(xí)冊答案