【題目】某校課外興趣小組在本校學(xué)生中開展感動中國2014年度人物先進(jìn)事跡知曉情況專題調(diào)查活動,采取隨機(jī)抽樣的方式進(jìn)行問卷調(diào)查,問卷調(diào)查的結(jié)果分為A、B、C、D四類.其中,A類表示非常了解”,B類表示比較了解”,C類表示基本了解”,D類表示不太了解,劃分類別后的數(shù)據(jù)整理如下表:

類別

A

B

C

D

頻數(shù)

30

40

24

b

頻率

a

0.4

0.24

0.06

(1)表中的a=________,b=________;

(2)根據(jù)表中數(shù)據(jù),求扇形統(tǒng)計圖中類別為B的學(xué)生數(shù)所對應(yīng)的扇形圓心角的度數(shù);

(3)若該校有學(xué)生1000名,根據(jù)調(diào)查結(jié)果估計該校學(xué)生中類別為C的人數(shù)約為多少?

【答案】(1)0.3、6;(2)144°;(3)240.

【解析】

根據(jù)頻數(shù)和頻律、扇形圖和總數(shù)之間的關(guān)系直接列式計算.

(1)解:問卷調(diào)查的總?cè)藬?shù)為:40÷0.4=100(名)
a=30÷100=0.3,B=100×0.06=6
故答案為:0.3、6
(2)解:類別為B的學(xué)生數(shù)所對應(yīng)的扇形圓心角的度數(shù)為:360°×0.4=144°
故答案為:144°
(3)解:1000×0.24=240
答:該校學(xué)生中類別為C的人數(shù)約為240

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某工廠現(xiàn)有甲種原料360千克,乙種原料290千克,計劃利用這兩種原料生產(chǎn)A、B兩種產(chǎn)品共50件,已知生產(chǎn)一件A種產(chǎn)品用甲種原料9千克,乙種原料3千克,可獲利700元;生產(chǎn)一件B種產(chǎn)品用甲種原料4千克,乙種原料10千克,可獲利1200元.

(1)按要求安排A、B兩種產(chǎn)品的生產(chǎn)件數(shù),有哪幾種方案?請你設(shè)計出來;

(2)設(shè)生產(chǎn)A、B兩種產(chǎn)品總利潤為y元,其中一種產(chǎn)品生產(chǎn)件數(shù)為x件,試寫出y與x之間的函數(shù)關(guān)系式,并利用函數(shù)的性質(zhì)說明那種方案獲利最大?最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,以O(0,0)、A(1,-1)、B(2,0)為頂點,構(gòu)造平行四邊形,下列各點中不能作為平行四邊形第四個頂點坐標(biāo)的是(  。

A. (3,-1) B. (-1,-1) C. (1,1) D. (-2,-1)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一只不透明的袋子中裝有紅球2個和白球2個,這些球除顏色外其余都相同,小明從袋子中任意摸出一球,記下顏色后不放回,若小明再從剩余的球中任取一球,請你用列表法或樹狀圖的方法,求小明兩次都摸出紅球的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在菱形ABCD中,AB=BD,點E、F分別在BC、CD上,且BE=CF,連接BF、DE交于點M,延長ED到H使DH=BM,連接AM,AH,則以下四個結(jié)論:

①△BDF≌△DCE;②∠BMD=120°;③△AMH是等邊三角形;④S四邊形ABCD= AM2

其中正確結(jié)論的個數(shù)是( )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABO中,ABOB,OB=,AB=1,把ABO繞點O旋轉(zhuǎn)150°后得到A1B1O,則點A1的坐標(biāo)為

A.(﹣1, B.(﹣1,)或(﹣2,0) C.,﹣1)或(0,﹣2) D.,﹣1)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=ax2+bx+c經(jīng)過點(﹣1,0),對稱軸l如圖所示,則下列結(jié)論:abc>0;a﹣b+c=0;2a+c<0;a+b<0,其中所有正確的結(jié)論是(

A.①③ B.②③ C.②④ D.②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】目前節(jié)能燈在城市已基本普及,為響應(yīng)號召,某商場計劃購進(jìn)甲,乙兩種節(jié)能燈共200只,這兩種節(jié)能燈的進(jìn)價、售價如下表:

進(jìn)價(元/只)

售價(元/只)

甲型

20

30

乙型

30

45

1)若購進(jìn)甲,乙兩種節(jié)能燈共用去5200元,求甲、乙兩種節(jié)能燈各進(jìn)多少只?

2)若商場準(zhǔn)備用不多于5400元購進(jìn)這兩種節(jié)能燈,問甲型號的節(jié)能燈至少進(jìn)多少只?

3)在(2)的條件下,該商場銷售完200只節(jié)能燈后能否實現(xiàn)盈利超過2690元的目標(biāo)?若能請你給出相應(yīng)的采購方案;若不能說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)先化簡,再求值:3x2﹣(2x2xy+y2+(﹣x2+3xy+2y2),其中x=2,y=3

2)一個角比它的余角大20°,求這個角的補(bǔ)角度數(shù).

查看答案和解析>>

同步練習(xí)冊答案