【題目】如圖,池塘邊有一塊長為18m,寬為10m的長方形土地,現(xiàn)在將其 余三面留出寬都是xm的小路,中間余下的長方形部分做菜地,用整式表示:

(1)菜地的長a m,寬b m

(2)菜地面積S m2;

(3)x0.5m時,菜地面積是多少?

【答案】(1)(18-2x),(10-x);(2)(18-2x) (10-x);(3)161.5.

【解析】

(1)根據(jù)題意表示出菜地的長與寬即可;

(2)根據(jù)長方形面積公式表示出菜地面積S即可;

(3)把x的值代入計算即可求出S的值.

解:(1)根據(jù)題意得:菜地的長a=(18﹣2xm,b=(10﹣xm

故答案為:(18﹣2x),(10﹣x);

(2)菜地的面積為S=(18﹣2x)(10﹣xm2;

故答案為:(18﹣2x)(10﹣x);

(3)當x=0.5時,S=(18﹣1)×(10﹣0.5)=17×9.5=161.5(m2).

答:菜地面積是161.5(m2).

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】下列說法中,不正確的是  

全等形的面積相等;

形狀相同的兩個三角形是全等三角形;

全等三角形的對應(yīng)邊,對應(yīng)角相等;

若兩個三角形全等,則其中一個三角形一定是由另一個三角形旋轉(zhuǎn)得到的.

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(8 )2013 4 月起泉州市區(qū)居民生活用水開始實行階梯式計量水價,據(jù)了解,此次實行的階梯式計量水價分為三級(如表所示):

例:若某用戶 2013 6 月份的用水量為 35 噸,按三級計算則應(yīng)交水費為:

20×1.65+(30﹣20)×2.48+(35﹣30)×3.30=74.3(元)

(1)如果小東家 2013 6 月份的用水量為 20 噸,則需繳交水費多少元?

(2)如果小明家 2013 7 月份的用水量為 a 噸,水價要按兩級計算,則小明家該月應(yīng)繳交水費多少元?(用含 a 的代數(shù)式表示,并化簡)

(3)若一用戶 2013 7 月份應(yīng)該水費 90.8 元,則該戶人家 7 月份用水多少噸?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC經(jīng)過一次平移到△DFE的位置,請回答下列問題:

(1)C的對應(yīng)點是點__________,D=__________,BC=__________;

(2)連接CE,那么平移的方向就是__________的方向,平移的距離就是線段__________的長度;

(3)連接AD,BF,BE,與線段CE相等的線段有__________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖是某運算程序該程序是循環(huán)迭代的一種根據(jù)該程序的指令,如果輸入的值是10,那么得到第1次輸出的值是5;把第1次輸出的值再次輸入,那么第2次輸出的值是6;把第2次輸出的值再次輸入,那么第3次輸出的值是3;…,第2018次輸出的值是(

A. 4 B. 3 C. 2 D. 1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點A從原點出發(fā)沿數(shù)軸向左運動,同時,點B也從原點出發(fā)沿數(shù)軸向右運動.已知點A的速度是1單位長度/秒,點B的速度是點A的速度的4倍(速度單位:單位長度/秒).

(1)求請在數(shù)軸上標出A、B兩點從原點出發(fā)運動3秒時的位置;

(2)若A、B兩點在(1)中的位置,數(shù)軸上是否存在一點P到點A,點B的距離之和為16,并求出此時點P表示的數(shù);若不存在,請說明理由.

(3)若A、B兩點從(1)中的位置開始,仍以原來的速度同時沿數(shù)軸向左運動時,另一點C同時從B點位置出發(fā)向A點運動,當遇到A點后,立即返回向B點運動,遇到B點后又立即返回向A點運動,如此往返,直到B點追上A點時,C點立即停止運動.若點C一直以10單位長度/秒的速度勻速運動,那么點C從開始運動到停止運動,行駛的路程是多少個單位長度?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在綜合實踐課上,小聰所在小組要測量一條河的寬度,如圖,河岸EF∥MN,小聰在河岸MN上點A處用測角儀測得河對岸小樹C位于東北方向,然后沿河岸走了30米,到達B處,測得河對岸電線桿D位于北偏東30°方向,此時,其他同學測得CD=10米.請根據(jù)這些數(shù)據(jù)求出河的寬度為米.(結(jié)果保留根號)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一茶葉專賣店經(jīng)銷某種品牌的茶葉,該茶葉的成本價是80元/kg,銷售單價不低于120元/kg.且不高于180元/kg,經(jīng)銷一段時間后得到如下數(shù)據(jù):

銷售單價x(元/kg)

120

130

180

每天銷量y(kg)

100

95

70

設(shè)y與x的關(guān)系是我們所學過的某一種函數(shù)關(guān)系.
(1)直接寫出y與x的函數(shù)關(guān)系式,并指出自變量x的取值范圍;
(2)當銷售單價為多少時,銷售利潤最大?最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了解茂名某水果批發(fā)市場荔枝的銷售情況,某部門對該市場的三種荔枝品種A、B、C在6月上半月的銷售進行調(diào)查統(tǒng)計,繪制成如下兩個統(tǒng)計圖(均不完整).請你結(jié)合圖中的信息,解答下列問題:

(1)該市場6月上半月共銷售這三種荔枝多少噸?
(2)該市場某商場計劃六月下半月進貨A、B、C三種荔枝共500千克,根據(jù)該市場6月上半月的銷售情況,求該商場應(yīng)購進C品種荔枝多少千克比較合理?

查看答案和解析>>

同步練習冊答案