【題目】RtABC中,∠C=90°a,b,c分別是∠A、∠B、∠C的對邊

1)若a=,c=4,求b

2)若c=8,∠A=30°,求b

3)若a:b=3:4c=15,求RtABC的面積.

【答案】(1)3;(2;(354

【解析】

1)直接運(yùn)用勾股定理即可得出答案;
2)根據(jù)30°角所對的直角邊等于斜邊一半可求出a,利用勾股定理可得出b;
3)利用勾股定理構(gòu)建方程求出a,b的值,再根據(jù)三角形面積公式計算即可.

解:(1)由勾股定理得:
2)∵∠C=90°,∠A30°,c8,
,
;
3)∵ab=34c=15,

設(shè)a=3xb=4x,

由勾股定理得:(3x)2+(4x)2=152,

解得:x=3,

a=3x=9,b=4x=12,

RtABC的面積=.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商場銷售一批襯衫,平均每天可售出件,每件盈利元.為了擴(kuò)大銷售,增加盈利,商場決定采取適當(dāng)?shù)慕祪r措施.經(jīng)調(diào)查發(fā)現(xiàn),在一定范圍內(nèi),襯衫的單價每下降元,商場平均每天可多售出件.

如果商場通過銷售這批襯衫每天獲利元,那么襯衫的單價應(yīng)下降多少元?

當(dāng)每件襯衫的單價下降多少元時,每天通過銷售襯衫獲得的利潤最大?最大利潤為多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,長方形ABCD中,AB=4BC=,點E是折線ADC上的一個動點(點E與點A不重合),點P是點A關(guān)于BE的對稱點.在點E運(yùn)動的過程中,使△PCB為等腰三角形的點E的位置共有( 。

A.4B.5C.6D.不能確定

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,中,以,以為邊作等腰三角形,分別為邊CD,BC上的點,連結(jié)AE,AF,EF,.

求證:.

,求的度數(shù).

請直接指出:當(dāng)點在何處時,?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)的圖象與反比例函數(shù)的圖象交于,兩點,與軸交于點,與軸交于點,已知,,點的坐標(biāo)為

求反比例函數(shù)的解析式;

求一次函數(shù)的解析式;

軸上存在一點,使得相似,請你求出點的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)的圖象如圖所示,有下列個結(jié)論:

;②;③;④,(的實數(shù));,其中正確的結(jié)論有________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】用硬紙板剪一個平行四邊形ABCD,作出它的對角線的交點O,我們可以做如下操作:

用大頭針把一根平放在平行四邊形上的直細(xì)木條固定在點O處,并使細(xì)木條可以繞點O轉(zhuǎn)動,撥動細(xì)木條,它可以停留在任意位置. 如果設(shè)細(xì)木條與一組對邊AB,CD的交點分別為點EF,則下列結(jié)論:①OE=OF;②AE=CF;③BE=DF;④AOE≌△COF,其中一定成立的是_________________________(填寫序號即可).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】模型建立:如圖1,等腰直角三角形中,,直線經(jīng)過點,過,過

1)求證:;

2)模型應(yīng)用:

①已知直線l1y軸交于點,將直線l1繞著點順時針旋轉(zhuǎn)45°l2,如圖2,求l2的函數(shù)解析式;

②如圖3,長方形ABCO,為坐標(biāo)原點,的坐標(biāo)為(8,6),分別在坐標(biāo)軸上,是線段上動點,點是直線上的一點,若APD以點D為直角頂點的等腰Rt,請直接寫出點的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ACB=ECD=90°,AC=BC,EC=DC,點D在AB邊上.

(1)求證:ACE≌△BCD

(2)若AE=3,AD=2.求ED的長.

查看答案和解析>>

同步練習(xí)冊答案