【題目】如圖,△ABC中,AB、AC的垂直平分線分別交BC于點(diǎn)E、F.若△AEF的周長(zhǎng)為12cm,則BC的長(zhǎng)為____________________cm.若∠EAF=110°,則∠BAC_____________________.

【答案】12 145°

【解析】

根據(jù)垂直平分線的性質(zhì)可得:BE=AE,CF=AF,從而求出BC=AEF的周長(zhǎng)=12cm,∠EAB=B=AEF,∠FAC=C=AFE,然后利用三角形的內(nèi)角和定理,即可求出∠AEF+AFE,從而求出∠B+∠C,最后再利用三角形的內(nèi)角和定理,即可求出∠BAC.

解:∵AB、AC的垂直平分線分別交BC于點(diǎn)E、F

BE=AE,CF=AF

BC=BEEFCF= AEEFAF=AEF的周長(zhǎng)=12cm

EAB=B=AEF,∠FAC=C=AFE

∵∠EAF=110°

∴∠AEF+AFE=180°-∠EAF=70°

∴∠B+∠C=AEF+AFE=(∠AEF+AFE=35°

∴∠BAC=180°-(∠B+∠C=145°.

故答案為12145°.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,二次函數(shù)的圖象與軸交于兩點(diǎn),點(diǎn)在原點(diǎn)的左則,點(diǎn)的坐標(biāo)為,與軸交于點(diǎn),點(diǎn)是直線下方的拋物線上一動(dòng)點(diǎn).

求這個(gè)二次函數(shù)的表達(dá)式;

求出四邊形的面積最大時(shí)的點(diǎn)坐標(biāo)和四邊形的最大面積;

連結(jié),在同一平面內(nèi)把沿軸翻折,得到四邊形,是否存在點(diǎn),使四邊形為菱形?若存在,請(qǐng)求出此時(shí)點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;

在直線找一點(diǎn),使得為等腰三角形,請(qǐng)直接寫出點(diǎn)坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,拋物線軸的交點(diǎn)為,與軸的交點(diǎn)分別為,且,直線軸,在軸上有一動(dòng)點(diǎn)過(guò)點(diǎn)作平行于軸的直線與拋物線、直線的交點(diǎn)分別為、

求拋物線的解析式;

當(dāng)時(shí),求面積的最大值;

當(dāng)時(shí),是否存在點(diǎn),使以、為頂點(diǎn)的三角形與相似?若存在,求出此時(shí)的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示的楊輝三角告訴了我們二項(xiàng)式乘方展開式的系數(shù)規(guī)律,如:第三行的三個(gè)數(shù)(1、2、1)恰好對(duì)應(yīng)著(a+b2的展開式a2+2ab+b2的系數(shù);第四行的四個(gè)數(shù)恰好對(duì)應(yīng)著(a+b3a3+3a2b+3ab2+b3的系數(shù),根據(jù)數(shù)表中前五行的數(shù)字所反映的規(guī)律,回答:

1)圖中第六行括號(hào)里的數(shù)字分別是   ;(請(qǐng)按從左到右的順序填寫)

2)(a+b4   ;

3)利用上面的規(guī)律計(jì)算求值:(43+6×2+1

4)若(2x12018a1x2018+a2x2017+a3x2016+……+a2017x2+a2018x+a2019,求a1+a2+a3+……+a2017+a2018的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABCD中,以點(diǎn)A為圓心,AB長(zhǎng)為半徑畫弧交AD于點(diǎn)F,再分別以點(diǎn)B,F(xiàn)為圓心,大于BF的長(zhǎng)為半徑畫弧,兩弧交于一點(diǎn)P,連接AP并延長(zhǎng)交BC于點(diǎn)E,連接EF.

(1)根據(jù)條件與作圖信息知四邊形ABEF   

A.非特殊的平行四邊形

B.矩形

C.菱形

D.正方形

(2)設(shè)AEBF相交于點(diǎn)O,四邊形ABEF的周長(zhǎng)為16,BF=4,求AE的長(zhǎng)和∠C的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖(1),已知拋物線E:y=ax2+bx+cx軸交于A,B(3,0)兩點(diǎn)(AB的左側(cè)),與y軸交于點(diǎn)C(0,3),對(duì)稱軸為直線x=1.

(1)填空:a=   ,b=   ,c=   

(2)將拋物線E向下平移d個(gè)單位長(zhǎng)度,使平移后所得拋物線的頂點(diǎn)落在OBC內(nèi)(包括OBC的邊界),求d的取值范圍;

(3)如圖(2),設(shè)點(diǎn)P是拋物線E上任意一點(diǎn),點(diǎn)H在直線x=﹣3上,PBH能否成為以點(diǎn)P為直角頂點(diǎn)的等腰直角三角形?若能,請(qǐng)求出符合條件的點(diǎn)P的坐標(biāo);若不能,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一次函數(shù)y=m1x+3的圖像與x軸的負(fù)半軸相交于點(diǎn)A,與y軸相交于點(diǎn)B,且△OAB面積為.

1)求m的值及點(diǎn)A的坐標(biāo);

2)過(guò)點(diǎn)B作直線BPx軸的正半軸相交于點(diǎn)P,且OP=2OA,求直線BP的函數(shù)表達(dá)式 .

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商店銷售A型和B型兩種電腦,其中A型電腦每臺(tái)的利潤(rùn)為400元,B型電腦每臺(tái)的利潤(rùn)為500元.該商店計(jì)劃再一次性購(gòu)進(jìn)兩種型號(hào)的電腦共100臺(tái),其中B型電腦的進(jìn)貨量不超過(guò)A型電腦的2倍,設(shè)購(gòu)進(jìn)A型電腦x臺(tái),這100臺(tái)電腦的銷售總利潤(rùn)為y元.

(1)求y關(guān)于x的函數(shù)關(guān)系式;

(2)該商店購(gòu)進(jìn)A型、B型電腦各多少臺(tái),才能使銷售總利潤(rùn)最大,最大利潤(rùn)是多少?

(3)實(shí)際進(jìn)貨時(shí),廠家對(duì)A型電腦出廠價(jià)下調(diào)a(0<a<200)元,且限定商店最多購(gòu)進(jìn)A型電腦60臺(tái),若商店保持同種電腦的售價(jià)不變,請(qǐng)你根據(jù)以上信息,設(shè)計(jì)出使這100臺(tái)電腦銷售總利潤(rùn)最大的進(jìn)貨方案.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在一個(gè)不透明的盒子里,裝有三個(gè)分別寫有數(shù)字6,﹣2,7的小球,它們的形狀、大小、質(zhì)地等完全相同,先從盒子里隨機(jī)取出一個(gè)小球,記下數(shù)字后放回盒子,搖勻后再隨機(jī)取出一個(gè)小球,記下數(shù)字.請(qǐng)你用畫樹形圖或列表的方法,求下列事件的概率:

(1)兩次取出小球上的數(shù)字相同的概率;

(2)兩次取出小球上的數(shù)字之和大于10的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案