【題目】小明爸爸裝修要粉刷斷居室的墻面,在家裝商場選購某品牌的乳膠漆:
規(guī)格(升/桶) | 價格(元/桶) | |
大桶裝 | 18 | 225 |
小桶裝 | 5 | 90 |
小明爸估算家里的粉刷面積,若買“大桶裝”,則需若干桶但還差2升;若買“小桶裝”,則需多買11桶但會剩余1升,
(1)小明爸預計墻面的粉刷需要乳膠漆多少升?
(2)喜迎新年,商場進行促銷:滿1000減120元現(xiàn)金,并且該品牌商家對“小桶裝”乳膠漆有“買4送1“的促銷活動,小明爸打算購買“小桶裝”,比促銷前節(jié)省多少錢?
(3)在(2)的條件下,商家在這次乳膠漆的銷售買賣中,仍可盈利25%,則小桶裝乳膠漆每桶的成本是多少元?
【答案】(1)小明爸預計墻面的粉刷需要乳膠漆74升;(2)比促銷前節(jié)省390元錢;(3)“小桶裝”乳膠漆每桶的成本是51.2元.
【解析】
(1)設需購買“大桶裝”乳膠漆x桶,則需購買“小桶裝”乳膠漆(x+11)桶,依題意,得:18x+2=5(x+11)﹣1;(2)由(1)可知,需購買15桶“小桶裝”乳膠漆.
(1)設需購買“大桶裝”乳膠漆x桶,則需購買“小桶裝”乳膠漆(x+11)桶,
依題意,得:18x+2=5(x+11)﹣1,
解得:x=4,
∴18x+2=74.
答:小明爸預計墻面的粉刷需要乳膠漆74升.
(2)由(1)可知,需購買15桶“小桶裝”乳膠漆.
∵商家對“小桶裝”乳膠漆有“買4送1“的促銷活動,
∴只需購買15×=12(桶),
∴比促銷前可節(jié)省15×90﹣(12×90﹣120)=390(元).
答:比促銷前節(jié)省390元錢.
(3)設“小桶裝”乳膠漆每桶的成本是y元,
依題意,得:12×90﹣120﹣15y=15y×25%,
解得:y=51.2.
答:“小桶裝”乳膠漆每桶的成本是51.2元.
科目:初中數(shù)學 來源: 題型:
【題目】“搶紅包”是2015年春節(jié)十分火爆的一項網(wǎng)絡活動,某企業(yè)有4000名職工,從中隨機抽取350人,按年齡分布和對“搶紅包”所持態(tài)度情況進行了調(diào)查,并將調(diào)查結果繪成了條形統(tǒng)計圖和扇形統(tǒng)計圖.
(1)這次調(diào)查中,如果職工年齡的中位數(shù)是整數(shù),那么這個中位數(shù)所在的年齡段是哪一段?
(2)如果把對“搶紅包”所持態(tài)度中的“經(jīng)常(搶紅包)”和“偶爾(搶紅包)”統(tǒng)稱為“參與搶紅包”,那么這次接受調(diào)查的職工中“參與搶紅包”的人數(shù)是多少?
(3)請估計該企業(yè)“從不(搶紅包)”的人數(shù)是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在直角梯形中,,為邊上一點,,且.連接交對角線于,連接.下列結論:
①;②為等邊三角形;
③; ④.其中結論正確的是
A.只有①② | B.只有①②④ |
C.只有③④ | D.①②③④ |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB為半圓O在直徑,AD、BC分別切⊙O于A、B兩點,CD切⊙O于點E,連接OD、OC,下列結論:①∠DOC=90°,②AD+BC=CD,③S△AOD:S△BOC=AD2:AO2 , ④OD:OC=DE:EC,⑤OD2=DECD,正確的有( )
A.2個
B.3個
C.4個
D.5個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=4,AD=5,AD,AB,BC分別與⊙O相切于E,F(xiàn),G三點,過點D作⊙O的切線BC于點M,切點為N,則DM的長為( )
A.
B.
C.
D.2
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知A(﹣1,﹣1),B(3,2),C(1,4)
(1)畫出△ABC向上平移2個單位,向左平移3個位置后的△A′B′C′;
(2)寫出A、C的對應點A′、C′的坐標;
(3)求兩次平移過程中線段AC掃過的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,∠BAC=90°,BD⊥DE,CE⊥DE,添加下列條件后仍不能使△ABD≌△CAE的條件是( 。
A. AD=AE B. AB=AC C. BD=AE D. AD=CE
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】 我們定義:如圖1、圖2、圖3,在△ABC中,把AB繞點A順時針旋轉α(0°<α<180°)得到AB′,把AC繞點A逆時針旋轉β得到AC′,連接B′C′,當α+β=180°時,我們稱△AB'C′是△ABC的“旋補三角形”,△AB′C′邊B'C′上的中線AD叫做△ABC的“旋補中線”,點A叫做“旋補中心”.圖1、圖2、圖3中的△AB′C′均是△ABC的“旋補三角形”.
(1)①如圖2,當△ABC為等邊三角形時,“旋補中線”AD與BC的數(shù)量關系為:AD= BC;
②如圖3,當∠BAC=90°,BC=8時,則“旋補中線”AD長為 .
(2)在圖1中,當△ABC為任意三角形時,猜想“旋補中線”AD與BC的數(shù)量關系,并給予證明.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com