【題目】如圖,在矩形ABCD中,O為AC中點,EF過O點且EF⊥AC分別交DC于F,交AB于點E,點G是AE中點且∠AOG=30°,則下列結(jié)論正確的個數(shù)為(

(1)DC=3OG;(2)OG= BC;(3)OGE是等邊三角形;(4).

A. 1 B. 2 C. 3 D. 4

【答案】C

【解析】∵EF⊥AC,點G是AE中點,

OG=AG=GE=AE,

∵∠AOG=30°,

∴∠OAG=∠AOG=30°,

∠GOE=90°-∠AOG=90°-30°=60°,

∴△OGE是等邊三角形,故(3)正確;

設(shè)AE=2a,則OE=OG=a,

由勾股定理得,AO= ,

∵O為AC中點,

AC=2AO=2 ,

BC=AC= ,

Rt△ABC中,由勾股定理得,AB==3a

∵四邊形ABCD是矩形,

∴CD=AB=3a,

∴DC=3OG,故(1)正確;

OG=a, BC= ,

OGBC,故(2)錯誤;

SAOE=a =,

SABCD=3a =3 2,

SAOE=SABCD,故(4)正確;

綜上所述,結(jié)論正確是(1)(3)(4)共3個,

故選C.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】 a>0,b<0,|a|<|b|, a、﹣a、b、﹣b 從小到大的順序是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知中, , .如圖,將進行折疊,使點落在線段上(包括點和點),設(shè)點的落點為,折痕為,當(dāng)是等腰三角形時,點可能的位置共有( ).

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(本題14分)如圖,拋物線y=x2+x+c與x軸的負半軸交于點A,與y軸交于點B,連結(jié)AB,點C(6, )在拋物線上,直線AC與y軸交于點D.

(1)求c的值及直線AC的函數(shù)表達式;

(2)點P在x軸正半軸上,點Q在y軸正半軸上,連結(jié)PQ與直線AC交于點M,連結(jié)MO并延長交AB于點N,若M為PQ的中點.

①求證:△APM∽△AON;

②設(shè)點M的橫坐標(biāo)為m,求AN的長(用含m的代數(shù)式表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】用四舍五入法得到的近似數(shù) 1.038 萬,則在下列說法中,正確的是(

A.它精確到十位B.它精確到千位C.它精確到萬位D.它精確到 0.001

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知|a|=5b=2,且 a+b<0,則 ab 的值是(

A.10B.-10C.10 -10D.-3 7

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】6年前,甲的年齡是乙的3倍,現(xiàn)在甲的年齡是乙的2倍,甲現(xiàn)在_________歲,乙現(xiàn)在________歲.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某電信公司手機有兩類收費標(biāo)準(zhǔn),A類收費標(biāo)準(zhǔn)如下:不管通話時間多長,少,每部手機每月必須繳月租費12元,另外,通話費按0.2元/min計。B類收費標(biāo)準(zhǔn)如下:沒有月租費,但通話費按0.25元/min計。

(1)分別寫出A、B兩類每月應(yīng)繳費用y(元)與通話時間xmin)之間的關(guān)系式;

(2)如果手機用戶預(yù)算每月交55元的話費,那么該用戶選擇哪類收費方式合算?

(3)每月通話多長時間,按A、B兩類收費標(biāo)準(zhǔn)繳費,所繳話費相等?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列說法正確的有(  )

A.π是有理數(shù)

B.棱柱的底面是多邊形

C.兩點之間,直線最短

D.球體可以展開成平面圖形

查看答案和解析>>

同步練習(xí)冊答案