【題目】某數(shù)學(xué)小組在郊外的水平空地上對(duì)無(wú)人機(jī)進(jìn)行測(cè)高實(shí)驗(yàn).如圖,兩臺(tái)測(cè)角儀分別放在A、B位置,且離地面高均為1米(即米),兩臺(tái)測(cè)角儀相距50米(即AB=50米).在某一時(shí)刻無(wú)人機(jī)位于點(diǎn)C (點(diǎn)C與點(diǎn)A、B在同一平面內(nèi)),A處測(cè)得其仰角為,B處測(cè)得其仰角為.(參考數(shù)據(jù):,,,

1)求該時(shí)刻無(wú)人機(jī)的離地高度;(單位:米,結(jié)果保留整數(shù))

2)無(wú)人機(jī)沿水平方向向左飛行2秒后到達(dá)點(diǎn)F(點(diǎn)F與點(diǎn)A、BC在同一平面內(nèi)),此時(shí)于A處測(cè)得無(wú)人機(jī)的仰角為,求無(wú)人機(jī)水平飛行的平均速度.(單位:米/秒,結(jié)果保留整數(shù))

【答案】1)無(wú)人機(jī)的高約為19m;(2)無(wú)人機(jī)的平均速度約為5/秒或26/

【解析】

1)如圖,過(guò)點(diǎn),垂足為點(diǎn),設(shè),則.解直角三角形即可得到結(jié)論;

2)過(guò)點(diǎn),垂足為點(diǎn),解直角三角形即可得到結(jié)論.

解: 1)如圖,過(guò)點(diǎn),垂足為點(diǎn)

,

設(shè),則

Rt△ACH中,,

解得:

答:計(jì)算得到的無(wú)人機(jī)的高約為19m

2)過(guò)點(diǎn)F,垂足為點(diǎn)

Rt△AGF中,FG=CH=18,

.

答:計(jì)算得到的無(wú)人機(jī)的平均速度約為5/秒或26/秒.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABC與DEF都是等腰三角形,且AB=AC=3,DE=DF=2,若B+E=90°,則ABC與DEF的面積比為(

A、9:4 B、3:2 C、: D、3:2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形ABCD中,AB4,BC5EBC邊上的一個(gè)動(dòng)點(diǎn),DFAE,垂足為點(diǎn)F,連結(jié)CF

1)若AEBC

①求證:ABE≌△DFA;②求四邊形CDFE的周長(zhǎng);③求tanFCE的值;

2)探究:當(dāng)BE為何值時(shí),CDF是等腰三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,已知拋物線(xiàn)和直線(xiàn),點(diǎn)均在直線(xiàn)上.

1)求直線(xiàn)的解析式;

2)若拋物線(xiàn)過(guò)點(diǎn),且拋物線(xiàn)與線(xiàn)段有兩個(gè)不同的交點(diǎn),求的取值范圍;

3)將直線(xiàn)下移2個(gè)單位得到直線(xiàn),直線(xiàn)與拋物線(xiàn)交于、兩點(diǎn),若點(diǎn)的橫坐標(biāo)為,點(diǎn)的橫坐標(biāo)為,當(dāng),時(shí),求的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為加快智慧校園建設(shè),某市準(zhǔn)備為試點(diǎn)學(xué)校采購(gòu)一批兩種型號(hào)的一體機(jī),經(jīng)過(guò)市場(chǎng)調(diào)查發(fā)現(xiàn),每套型一體機(jī)的價(jià)格比每套型一體機(jī)的價(jià)格多萬(wàn)元,且用萬(wàn)元恰好能購(gòu)買(mǎi)型一體機(jī)和型一體機(jī).

1)列二元一次方程組解決問(wèn)題:求每套型和型一體機(jī)的價(jià)格各是多少萬(wàn)元?

2)由于需要,決定再次采購(gòu)型和型一體機(jī)共套,此時(shí)每套型體機(jī)的價(jià)格比原來(lái)上漲,每套型一體機(jī)的價(jià)格不變.設(shè)再次采購(gòu)型一體機(jī)套,那么該市至少還需要投入多少萬(wàn)元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A、BC的坐標(biāo)分別為(1,3)(4,1)(2,1),先將△ABC沿一確定方向平移得到△A1B1C1,點(diǎn)B的對(duì)應(yīng)點(diǎn)B1的坐標(biāo)是(1,2),再將△A1B1C1繞原點(diǎn)O順時(shí)針旋轉(zhuǎn)90°得到△A2B2C2,點(diǎn)A1的對(duì)應(yīng)點(diǎn)為點(diǎn)A2

1)畫(huà)出△A1B1C1和△A2B2C2;

2)求出在這兩次變換過(guò)程中,點(diǎn)A經(jīng)過(guò)點(diǎn)A1到達(dá)A2的路徑總長(zhǎng);

3)求線(xiàn)段B1C1旋轉(zhuǎn)到B2C2所掃過(guò)的圖形的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在菱形中,,,分別為的中點(diǎn),連接、、,則圖中與全等的三角形(除外)有( ).

A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,已知四邊形DOBC是矩形,且D04),B60).若反比例函數(shù)x0)的圖象經(jīng)過(guò)線(xiàn)段OC的中點(diǎn)A,交DC于點(diǎn)E,交BC于點(diǎn)F.設(shè)直線(xiàn)EF的解析式為y2=k2x+b

1)求反比例函數(shù)和直線(xiàn)EF的解析式;

(溫馨提示:平面上有任意兩點(diǎn)Mx1,y1)、Nx2y2),它們連線(xiàn)的中點(diǎn)P的坐標(biāo)為( ))(2)求△OEF的面積;

3)請(qǐng)結(jié)合圖象直接寫(xiě)出不等式k2x -b0的解集.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABC內(nèi)接于⊙O,AB是直徑,過(guò)點(diǎn)A作直線(xiàn)MN,且∠MAC=∠ABC

1)求證:MN是⊙O的切線(xiàn).

2)設(shè)D是弧AC的中點(diǎn),連結(jié)BDAC于點(diǎn)G,過(guò)點(diǎn)DDEAB于點(diǎn)E,交AC于點(diǎn)F

①求證:FDFG

②若BC3,AB5,試求AE的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案